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Abstract 

The fitting of a pair of diagrams, and the measurement 

of their similarity in shape, is particularly difficult if 

the diagrams lack defined reference points.  In such situations 

it is not possible to label corresponding points on two 

diagrams (e.g. point 1 on diagram A corresponds to point 1 on 

diagram B).  The lack of correspondences may arise from 

doubts about homologies in biological structures, or difficulties 

in defining positions of interest on artefacts;  further, choice 

of correspondences usually requires expert examination, and is 

not readily obtained by automated methods. 

Some experiments will be described with a computer method 

that only requires the coordinates of m points of diagram A and 

n points of diagram B, provided these are not too few and are 

reasonably evenly-spaced.  The diagrams need not be closed 

outlines, or of other special form.  The method is based on a 

suggestion (Sneath, 1967, J. Zool., Lond. 151:68) that one measure 

of misfit is the sum of squared distances between each point in 

A and the nearest point in B, whichever point this is. 

The diagrams are first overlapped at the centroids, scaled 

to unit two-dimensional variance to bring them to the same size, 

and then diagram B is rotated until the closest-point function 

mentioned above is a minimum.  Diagram B is then reflected 

("flipped") about the X axis, and the process repeated, so as to 

make provision for asymmetric objects.  At angle of best fit the 

program also lists the closest points, £, h. i  on B to 

the points 1, 2, 3 on A.  These can be viewed as 

"geometrically homologous" or "isologous" pairs of points. 

Fitting diagram A to diagram B gives non-identical but very similar 

results. 



The curve of the distance function with angle is many- 

cusped, which leads to slow computation to avoid trapping in 

local minima.   Attempts to smooth the curve Cto obtain quicker 

search for the global minimum) will be described, together with 

results on various objects and possible extensions to more 

dimensions and to series of reconstructions that are intermediate 

in shape between the pairs of diagrams.   The principle fore- 

shadows (with digitizers and extremely fast computers) a very 

general and powerful method for pattern-recognition. 

INTRODUCTION 

There are a number of methods of finding the best fit between 

two diagrams on which have been marked pairs of corresponding 

reference points (Sneath, 1967; Bookstein, 1978, 1982).  They 

also allow the measurement of similarity or misfit between the 

diagrams.  The choice of reference points requires, however, 

decisions on homologies in the broad sense (not necessarily 

phylogenetic homology).   Thus the bregma of the skull may be 

recognized as homologous in two specimens, but one cannot safely 

homologize the most posterior points on the skulls.  Over most 

of the cranial vault there are no easily defined homologous points. 

Similar problems arise with artefacts: one might homologize the 

tips of two spearheads, but be unsure whether one should treat the 

broadest part of the spearheads as homologous. 

The present contribution reports on some experiments with a 

method for matching a pair of diagrams on which no corresponding 

"homologous" points are available, e.g. the outline of two 

featureless artefacts.   It is based on the strategy suggested 

in Sneath (1967) , and leads both to the best fitting of the diagrams 

(with a measure of misfit) and the labelling of corresponding 

pairs of points.  To avoid confusion with phylogenetic homology, 

the relationship between corresponding points is referred to as 

"geometric homology", but the term "isology" would also be 

appropriate (Florkin, 1962).  It is assumed that in principle the 

diagrams are represented by digitized points that are reasonably 

closely and evenly spaced so as to represent the object in an 

adequate manner. 
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METHODS 

The two diagrams, A and B are represented respectively by 

in and n points, whose coordinates on the X and Y axes are recorded. 

The two diagrams are first scaled so that the mean squared 

distance of the points from the centroid is unity, and they are 

overlapped at their centroids.  This is achieved by replacing 

(for each diagram separately) the Xi X coordinates by x, jr using 

the following transformation (Sneath, 1967): 

^i = (ïi - D/s 

li = (li - 1/1 
where X., Y- are the coordinates for point i.   X and Y are the 

means oT X and Y over m points (for A) or n points (for B), and 

s = is\  + S^Y)Î 

where s^^^ and s^y ^'^^ ^^^  variances of X and Y (with m degrees of 
freedom Tor A an3 n degrees of freedom for B). 

The remaining step is to rotate one diagram about the centroid 

until the misfit between the diagrams is a minimum.  Because 

there are no corresponding marked pairs of points it was suggested 

(Sneath, 1967) that the rotation should be to that angle, g,   that 

minimizes the sum of squared distances from each point of one 

diagram to the nearest point in the other.  A BASIC program has 

been written for this, and it can be run for moderate numbers of 

points on a microcomputer. 

The minimum distance function is defined, for diagram A held 

fixed, and B rotated, as follows (it is convenient to employ the 

mean, so that it is independent of m): 
m 

ÏÏ*   = i   y   d'. 
- a  m j^4i 1£ 

where d^.  is the squared distance of point i in A to the closest 
— ic — 

point, Ç, in B, i.e. {x^ -  x^)* + (x^ " IQ^^•       Point c may be the 
same for several points~in Aj conver¥ely,~a particular point in B 

may never become c (i.e. it may never be a "closest point"). 

Three points should be noted: (1) the fitting of B to A is 

not exactly the same as that of A to B;  (2) with asymmetric 

objects it is necessary to reflect one diagram about an axis (to 

"flip it over"), and determine both configurations;  and (3) when 

a diagram is rotated the curve of ïï^  shows a number of local 
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minima.   The first is self-evident: the number of points in A 

and B may differ, so one expects some discrepancy in the exact 

values for d^^.   The second point is readily explained if one 

considers two~coins, which might show identical portraits but 

facing left in one, right in the other.   One cannot superimpose 

the portraits unless one is reflected from left to right.  The 

third point is most obviously illustrated by radially-symmetrical 

objects.   A pair of five-limbed starfish will match well at 

five positions where the limbs are coincident.   If some additional 

feature were shown, e.g. the madreporite (which is eccentric), 

there will be a global minimum, and this is the desired solution. 

These three factors make the fitting very slow,- particularly 

the third, because it is necessary to search at close angles in 

order to find the global minimum. 

RESULTS 

The analysis of objects of simple outline and bilateral 

symmetry is shown in Figs. 1-7. 

Fig. 1 shows the outlines of two handaxes, with the original 

coordinates in la and the coordinates after scaling and overlapping 

at the centroids in lb.   They show the minimum number of points 

needed to represent the outlines reasonably well.   Note that no 

information is provided on homologous points, e.g. the tip is 

numbered 7 in A but 1 in B. 

When B is rotated, and the sum of d'     determined at eight 

equally-spaced angles, one observes (Fig.~2) two troughs (where 

the handaxes lie side by side) and two peaks (where they lie 

athwart one another), and this is seen both for the "unflipped" 

case (Fig. 2a) and the "flipped" case (Fig. 2b) in which B was 

reflected before rotation about the X axis.   When the configuration 

was searched close to the four minima, the results are shown in 

Fig. 3a and 3b, which show the best fitting of B to diagram A. 

In 3a, diagram B is shown in the best, i.e. global, fit for the 

"unflipped" case by dashed lines, and for the "flipped" case by 

the dotted lines.   In Fig. 3b, the minor minima are similarly 

shown.   The figures also show the "geometric homologies" in the 

form of a vector of numbers that list the closest points in B to 

the eight points in A.  Thus in 3a on the left the vector 

66112344 indicates that the points 1, 2, 3, 4, 5, 6, 7, 8 in A 
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have as "geometrically homologous" points in B the points 

6, 6, 1, 1, 2, 3, 4, 4 respectively. 

In Figs. 3c and 3d are shown the corresponding results for 

diagram A rotated and fitted to B.  Note that the vectors of 

"geometrical homology" have here only six members, although there 

are eight in A. 

The values for ïï' and rotation angle in degrees are also 

shown in Fig. 3, those~for the "unflipped" case on the left, and 

the "flipped" case on the right.   It can be seen that the misfit 

values (mean d^) are very similar for all the minima, whether the 

global or the minor minima.  This is to be expected, because the 

handaxes are not only roughly bilaterally symmetric, but are not 

very obviously pointed at one end rather than the other,— at 

least not when represented by so few points. 

The problem of finding the global minimum is illustrated by 

Fig. 4, which shows the curve of the sum of d^  for B fitted to 

A "unflipped", for 72 angles at 5° intervals. ~ There are seven 

visible minima, but one requires the global minimum near 45 . 

Fig. S shows the region near this enlarged, with closer spaced 

angles, and the inset shows yet finer detail.   It is evident 

there are a series of cusps, one of which is clearly shown, and 

these correspond to the points at which the "geometrical homology" 

vectors change (shown by vertical bars in Figs. 4 and 5). 

These cusps pose exceptional difficulties for iterative 

searches.  The computing method therefore employs an exhaustive 

search, analogous to the well-known method of repeated bisection, 

by determining Id^     at r equally-spaced intervals and reducing at 

each cycle the range represented by these r angles, (centering 

them successively on the previous angle with lowest î^dp.  The 

time required is almost independent of r, so it is wise to make r 

fairly large (e.g. 32) so as to search the entire circle of 360° 

closely during the first cycle. 

The global minimum of mean d^^ for unflipped or flipped 

configuration, can then be taken as~a measure of shape dissimilarity 

ïï^  .  When B has been fitted to A the process can be repeated by — ag 
fitting diagram A to B.  Results, though not identical as has 

been noted, are commonly very close to those for fitting B to A. 

The points in Figs. 1-5 were not chosen to be numerous or 

accurately representative of the outlines.  When the numbers of 
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points are increased, the fitting is obviously improved (Figs. 6, 

7), and it is clear that the pointed ends of the handaxes now 

have a greater influence on the fitting process.  The cusps, too, 

tend to be less marked, though they are still present and are 

more numerous.   In Figs. 6 and 7 the "unflipped" and "flipped" 

solutions are still very close, because the handaxes are almost 

bilaterally symmetrical: the difference between the solution 

could be used as a measure of asymmetry.   It can be seen that 

the fit of B to A (Fig. 7a) is almost identical to that of A to 

B (Fig. 7b). 

The method is not restricted to closed outlines as in Fig. 1, 

but can handle arbitary shapes.  Figs. 8 and 9 show the fitting 

of capital letters E and F.  The fitting of F to E is not a 

trivial problem when it is remembered that no information is given 

to the computer to the effect that F is an alphabetic letter 

consisting of E without a lower cross-bar. 

In an attempt to speed up the computation an alternative 

search was also explored.   In this, the quadratic correlation of 

the lowest five values of ïd^  was determined for each iteration, - a 
and when this became small a quadratic function was fitted, and 

searched for the minimum.  This was not very successful, and 

sometimes led to trapping in a local minimum. 

More successful was a harmonic function.  The rationale is 

that abrupt changes and cusps could be avoided if the distances 

from point i^ on diagram A to all points on B were considered, not 

only the single distance to the nearest point, c.  The distances 

must be weighted inversely to magnitude, but they must be protected 

from a reciprocal of zero if two points should become superimposed. 

This can be done by adding to all distances a small quantity, 

chosen to reflect approximately the average distance to be expected 

between points.  The harmonic function for B fitted to A was 

c-^j    J, JiC^/f^'hi * (i/2^0 
where h and ^ are points on A and B respectively and d^. . is 

(Xt - Xj)^ + (Xh " ^i-^^*  ^ suitable value for k is unity. 

The curve of d^  against angle was much smoother than that 

of d^ , and permitte3 easier quadratic search, with considerable 

improvement in speed.   The angle of best fit from d^  is not 

quite the same as for d^  but was usually within 0.5°T 
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have as "geometrically homologous" points in B the points 

6, 6, 1, 1, 2, 3, 4, 4 respectively. 

In Figs. 3c and 3d are shown the corresponding results for 

diagram A rotated and fitted to B.  Note that the vectors of 

"geometrical homology" have here only six members, although there 

are eight in A. 

The values for 3^  and rotation angle in degrees are also 

shown in Fig. 3, those~for the "unflipped" case on the left, and 

the "flipped" case on the right.   It can be seen that the misfit 

values (mean d^) are very similar for all the minima, whether the 

global or the minor minima.  This is to be expected, because the 

handaxes are not only roughly bilaterally symmetric, but are not 

very obviously pointed at one end rather than the other,— at 

least not when represented by so few points. 

The problem of finding the global minimum is illustrated by 

Fig. 4, which shows the curve of the sum of d^_ for B fitted to 

A "unflipped", for 72 angles at 5  intervals.  There are seven 

visible minima, but one requires the global minimum near 45 . 

Fig. 5 shows the region near this enlarged, with closer spaced 

angles, and the inset shows yet finer detail.   It is evident 

there are a series of cusps, one of which is clearly shown, and 

these correspond to the points at which the "geometrical homology" 

vectors change (shown by vertical bars in Figs. 4 and 5). 

These cusps pose exceptional difficulties for iterative 

searches.  The computing method therefore employs an exhaustive 

search, analogous to the well-known method of repeated bisection, 

by determining J^d^  at r equally-spaced intervals and reducing at 

each cycle the range represented by these r angles, (centering 

them successively on the previous angle with lowest Ed^)•  The 

time required is almost independent of r, so it is wise to make r 

fairly large (e.g. 32) so as to search the entire circle of 360 

closely during the first cycle. 

The global minimum of mean d^  for unflipped or flipped 

configuration, can then be taken as~a measure of shape dissimilarity 

3^  .  When B has been fitted to A the process can be repeated by 

fitting diagram A to B.  Results, though not identical as has 

been noted, are commonly very close to those for fitting B to A. 

The points in Figs. 1-S were not chosen to be numerous or 

accurately representative of the outlines.  When the numbers of 
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points are increased, the fitting is obviously improved (Figs. 6, 

7), and it is clear that the pointed ends of the handaxes now 

have a greater influence on the fitting process.  The cusps, too, 

tend to be less marked, though they are still present and are 

more numerous.   In Figs. 6 and 7 the "unflipped" and "flipped" 

solutions are still very close, because the handaxes are almost 

bilaterally symmetrical: the difference between the solution 

could be used as a measure of asymmetry.   It can be seen that 

the fit of B to A (Fig. 7a) is almost identical to that of A to 

B (Fig. 7b). 

The method is not restricted to closed outlines as in Fig. 1, 

but can handle arbitary shapes.  Figs. 8 and 9 show the fitting 

of capital letters E and F.  The fitting of F to E is not a 

trivial problem when it is remembered that no information is given 

to the computer to the effect that F is an alphabetic letter 

consisting of E without a lower cross-bar. 

In an attempt to speed up the computation an alternative 

search was also explored.   In this, the quadratic correlation of 

the lowest five values of 2d^ was determined for each iteration, 

and when this became small a quadratic function was fitted, and 

searched for the minimum.  This was not very successful, and 

sometimes led to trapping in a local minimum. 

More successful was a harmonic function.  The rationale is 

that abrupt changes and cusps could be avoided if the distances 

from point i^ on diagram A to all points on B were considered, not 

only the single distance to the nearest point, c.     The distances 

must be weighted inversely to magnitude, but they must be protected 

from a reciprocal of zero if two points should become superimposed. 

This can be done by adding to all distances a small quantity, 

chosen to reflect approximately the average distance to be expected 

between points.  The harmonic function for B fitted to A was 

d^ — c I      I   {l/id\.   *   (k/m))) 
h=l i=l V  ~ -fii   ~ ~ •^. 

where h and ^ are points on A and B respectively and d^. . is 

(x, - Xi^^ * (Xh ~ Xi^'*  ^ suitable value for k is unity. 

The curve of d'  against angle was much smoother than that 

of d^ , and permitted easier quadratic search, with considerable 

improvement in speed.  The angle of best fit from d^  is not 

quite the same as for d^  but was usually within 0.5°T 
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The global minimum of mean d^  for unflipped or flipped 

configuration, can then be taken as^a measure of shape dissimilarity 

3'  .  When B has been fitted to A the process can be repeated by 

fitting diagram A to B.  Results, though not identical as has 

been noted, are commonly very close to those for fitting B to A. 

The points in Figs. 1-5 were not chosen to be numerous or 

accurately representative of the outlines.  When the numbers of 
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points are increased, the fitting is obviously improved (Figs. 6, 

7), and it is clear that the pointed ends of the handaxes now 

have a greater influence on the fitting process.  The cusps, too, 

tend to be less marked, though they are still present and are 

more numerous.   In Figs. 6 and 7 the "unflipped" and "flipped" 

solutions are still very close, because the handaxes are almost 

bilaterally symmetrical: the difference between the solution 

could be used as a measure of asymmetry.   It can be seen that 

the fit of B to A (Fig. 7a) is almost identical to that of A to 

B (Fig. 7b). 

The method is not restricted to closed outlines as in Fig. 1, 

but can handle arbitary shapes.  Figs. 8 and 9 show the fitting 

of capital letters E and F.  The fitting of F to E is not a 

trivial problem when it is remembered that no information is given 

to the computer to the effect that F is an alphabetic letter 

consisting of E without a lower cross-bar. 

In an attempt to speed up the computation an alternative 

search was also explored.   In this, the quadratic correlation of 

the lowest five values of Zd' was determined for each iteration, — a 
and when this became small a quadratic function was fitted, and 

searched for the minimum.  This was not very successful, and 

sometimes led to trapping in a local minimum. 

More successful was a harmonic function.  The rationale is 

that abrupt changes and cusps could be avoided if the distances 

from point i^ on diagram A to all points on B were considered, not 

only the single distance to the nearest point, c.  The distances 

must be weighted inversely to magnitude, but they must be protected 

from a reciprocal of zero if two points should become superimposed. 

This can be done by adding to all distances a small quantity, 

chosen to reflect approximately the average distance to be expected 

between points.  The harmonic function for B fitted to A was 

d^ — c /  I      Î fl/(d\. + (k/m))) 
/L h=l 1=1 ^  ~ —   ~ ~  J 

where h and i^ are points on A and B respectively and d^. . is 

(x, - Xj^)^ + (Xh " Z-5^'  A suitable value for k is unity. 

The curve of d*  against angle was much smoother than that 

of d^ , and permittee easier quadratic search, with considerable 
— a 

improvement in speed.   The angle of best fit from d^  is not 

quite the same as for d^  but was usually within 0.5°7 
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DISCUSSION 

The harmonic function is not itself very attractive as a 

misfit measure, because d^  is not zero for identical diagrams 

and its algebraic properties are difficult to derive.  But it 

may be useful to find the angle of global fit, and then employ 

d'  as a misfit value.  For identical diagrams d^„ is zero, but •^ a — a 
it should be noted that it can be zero with non-identical diagrams 

for either A fitted to B or B fitted to A: if A and B are identical 

except that B has an extra outlying point, h, then d^  of A to B 

may be zero because h is never a closest point, c;  for B to A, 

however, h will make a non-zero contribution toward d^ . ' — — a 

The method is obviously sensitive to large differences in 

shape, particularly major regional changes, as when one region of 

A is greatly compressed in B.   The fitting is an overall fit 

for the diagrams as wholes, and no provision is made for major 

local distortion.  Therefore the "geometric homologies" can be 

inappropriate in some regions of the diagrams.   One possible 

solution is to construct a new diagram I intermediate between A 

and B, represented by the midpoints of the lines joining "geometric 

homologies", and to fit A to I and I to B. 

Imagine other intermediates, similarly constructed, between 

I and B, and extend this process indefinitely.  For convenience 

replace A by 0 and B by 1; then I is symbolized by 1/2.  One can 

then visualize a chain of intermediates, as finely spaced as 

desired, e.g. 0, 1/8, 1/4, 3/8, 1/2,   7/8, 1.  It may be that 

the chain of "geometric homology" vectors between successive items 

of the series would offer a way of improving on the imperfect 

homologization of the two ends of the series.  Siegel and Benson 

(1982) describe a median fitting that may be applicable here. 

Rotational fit methods can be applied to three dimensions (Sneath, 

1967;  Perkins and Green, 1982) and can be extended to many 

dimensions (Gower, 1971).  The present method can similarly be 

extended if required. 

The method is a first attempt at a complex problem, and clearly 

needs to be improved.   It is of interest because of its generality. 

Pattern recognition methods are commonly restricted to certain 

shapes.  Rohlf and Person (1983) in reviewing the biological 

applications note that even with relatively simple shapes there 

are considerable problems in automated image analysis (Vanderheydt 

et al., 1979).  Simple closed outlines can be handled by Fourier 
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analysis Ce.g. Kaesler and Waters, 1972;  Person et al., 1985), 

and principal components is sometimes applicable (Snee and Andrews, 

1971;  Wold, 1976).  Moment invariants (Hu, 1962) are subject to 

serious drawbacks, as they often lead to intractable indeterminacies 

(Rohlf, personal communication).  The present method can be 

adapted to closely spaced points obtained from automatic digitizers, 

and one can envisage that with high-speed computers it could be 

a powerful and general method for pattern recognition. 
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5° intervals. Vertical bars 
indicate where vectors of 
"geometric homology" 
change. 
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10 15 20 

Fig.6. Handaxes of Fig. 1 
represented by more 
closely-spaced points, 16 
in A and 12 in B. 
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Meandc 9 

h array 

     00316       3250 

11,10.9,4.8,7,1,12,5,9, 
3,3,2,7.12.6 

00248       325-5 

7.13,12,4,9,16.6,5.10, 
2,1.8 

Fig.7. Ilandaxes   of  Fig.   6  at  best 
global     fit:    (a)   B   fitted 
to  A;    (b)   A   fitted  to  B; 
solid   lines   indicate 
unrotated  diagram,   dotted 
lines  rotated  diagram. 
Other  conventions   as   in 
Fig.   3. 
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