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5.1 Introduction 

Two examples of abundance matrices in seriated form are shown in Tables 5.1 and 5.2. The 
first is of five proportions of painted pottery contained in a stratigraphie sequence of levels, 
one below the other, from an undisturbed refuse mound at Awatovi, Arizona (Burgh 1959). 
The second is of seven proportions of different types of microliths from Mesolithic sites spread 
throughout a wide area of southern England (Jacobi et al. 1980; the types have been grouped 
and only some of the sites mentioned in this paper are used here, for reasons of exposition). 

Both the matrices are examples of Q-Matrices in the sense that as one moves down each 
column the quantities never strictly decrease and then strictly increase again. The order of 
the rows in such a matrix gives rise to an order of the corresponding provenances which is a 
candidate for their relative chronological ordering (see for example, Robinson 1951, Brainard 
1951, Kendall 1969). In the first case this is confirmed by the stratigraphie order in which they 
were found and, indeed, this illustrates the general theory well. In the second there is no such 
stratigraphy, far from it; and it is open to the archaeologist to accept the suggested chronology 
or not. Notice that if the rows of a Q-ra.aXnx are completely inverted then the matrix is stiU a 
ß-matrix. It is up to the archaeologist to decide between the two orders, or to reject both. 

Both the matrices are in ß-form and the theory of seriation would tend to leave it there. 
But perhaps we should look for something more in the data corresponding to the fact that one 
is derived from a weU defined stratigraphie sequence whilst the other is from a series of sites 
spread throughout a large area. Perhaps one should be a 'tightly' seriated matrix and the other 
a 'loosely' seriated one—whatever these terms may mean! I want to show in this paper that 
there is a sense in which this is so. I add that this idea did come into being in this way; it 
came from purely theoretic considerations, but it does seem to me that the results do have this 
interpretation (Laxton 1987, to appear). 

5.2 Ttie mottiematicQl problem 

RecaU that an m x n abundance matrix A = (ri,r2, .-.,7"m), where the r, are the rows of A, is 
said to be a pre-Q-matrix if there is a permutation of its rows such that the resulting m x n 
matrix B = (r^(i), r^(2),..., r^(m)). is a ß-matrix. B is called a Q-form of A or resulting from A. 
Thus the general problem in seriation is to determine if an abundance matrix is a pre-ß-matrix 
or not and, if it is, to find a permutation w of its rows to cast it into a ß-form. If A is pre-Q 
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:ows Proportions 

ri 4 6 86 0 4 
r2 6 14 76 0 4 
rs 8 19 70 1 2 
r4 18 49 30 3 0 
rs 23 54 20 3 0 
re 32 49 5 14 0 
r? 39 43 0 18 0 
rg 49 30 0 21 0 
r9 62 20 0 18 0 
rio 87 3 0 10 0 

Levels (top to bottom) 
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Table 5.1: Proportions of five different types of painted pottery contained in levels in the western 
Mound at Awatovi (Burgh 1959) 

Lows Proportions 

bi 85 3 12 0 0 0 0 
b2 67 10 23 0 0 0 0 
b3 26 40 8 0 0 26 0 
b4 26 29 8 3 0 33 1 
bs 20 3 4 42 18 0 13 
be      20      1      4    13    58      0     4 

Table 5.2: Proportions of seven different groups of microliths from Mesolithic sites in southern 
England (Jacobi et al. 1980) 
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and there is only one associated ß-fonn B, apart from complete invertion of its rows, then B 
is caUed a unique Q-matrix or Q-form. Thus consider the following formal examples: 

/ 0 90 10 \    /   0   90 10 \    / 0 90 10 \ 
I   10 0 90 ) , (   10 10 80 I , I   10 10 80 ) . 
V 90 10 0 /    MOO 0   0 /    V 80 10 10 / 

The first is not pre-Q; the second is a unique Q-maXm.; and the third is a non-imique ß-matrix 
since the second and third rows can be interchanged leaving the matrix in ß-form. 

Qearly if a matrix A is a ß-matrix then any subset of k of its rows form a fc x n ß-matrix. 
In particular, any subset of three of its rows and any subset of four of its rows are ß-matrices. 
Therefore a necessary condition that a matrix be pre-Q is that every set of three of its rows 
and every set of four of its rows is pre-Q. Now, this condition is not sufficient. For example, 

inthe matrix .11000. 

'01100^ 
00110 
000 1 1 

^ 1 0001^ 
every subset of three and of four of its rows is pre-Q but the whole matrix is not. 

However, in 1976 I proved the following theorem (Laxton 1976). 

Theorem 1 Suppose that A is an m y: n abundance matrix which satisfies the following 
conditions: 

i) Each subset of three rows is pre-Q and its resulting Q-form is a unique 3 x n Q-matrix. 

ii) Each subset of four rows is pre-Q. 

Then A is pre-Q. 

In fact the result is actually stronger than this. 

Corollary 1 Under the conditions of Theorem 1, A has a unique Q-form. 

In itself this result is of some interest in that it reduces a search for pre-ß-ness in a m x n 
matrix from one which is exponential in m to one which is only polynomial in m—Oijrâ). 
The proof of this theorem is rather a long and rather tedious one by induction on the number of 
rows and treating many special cases. The idea for such a result, though not the proof, comes 
fix)m the classical theorems of Menger (Menger 1928, Blumenthal 1953). Actually the same 
result had been proved by Fishbum using the language of ternary relations on sets (Fishbum 
1971, 1985). The two results are entirely equivalent and the proofs very similar. 

Both these results suffer from two important déficiences. 

1. The entire condition (i) of the theorem is not necessary for the conclusion. For example, 
the matrix i n n 

A = 
1 1 0 
1 1 1 

Voii/ 
is a tmique Q matrix but the first three rows have two distinct ß-forms 

/100\    /110\ 
110    ,111     . 

V1 1 1 /    V100/ 
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On the other hand, without something to replace it the result does not stand, as our 
previous example showed. 

2. The uniqueness of the j2-form which results under these conditions is not always desirable 
in practice. A set of data may give rise to several ß-forms—apart firom inversion, that is. 

These two problems led me to search for a more general and complete result and this is outlined 
in the next section. 

5.3 The general theorem: fixing numbers and iinear rigidity 

Menger proved that if every four elements of a semi-metric space yi of m points can be embedded 
on the Euclidean line, then aU m points can. His proofs depend very much on the properties of 
Euclidean space, which are not available to us here in this problem. Actually Menger proved 
something a bit stronger. He showed that if there exist two points P and Q 'm A such every set 
of four points containing P and Q can be embedded on the Euclidean line, then aU the points 
of A can be embedded on the line. Taking this hint as a possible generalization I have been 
able to prove the following result 

Theorem 2 Let A be anm x n abundance matrix with rows a, b,..., m (m> 3). 
Let ui,U2,...,Uk be k > 2 distinct rows of A, where if k > 2, then the k x n matrix 

(ui,U2,,...,Uk) is a Q-matrix. 
[Comment. In what follows in the statement of this theorem these «, wiU always appear in 

Uns fixed order. By (ui,..., «j,..., Uk) is meant the (/s — 1) x n matrix with the rows in this order 
but with precisely the row «, missing.] 

Now assume that the following conditions hold for all i and all rows 
a,b,ce A\ {ui,...,Uk}: 

i) the ik + \)x n matrices ia,ui,...,Uk) and (a,b,ui,...,Ui,..],Uk) are pre-Q and have 
unique Q-forms; 

ii) the (k + 2) X n matrices (a,6, c,ui, ...,Uk) and (a,6, wi,...,u,, ...,Ufc) are pre-Q. 

Then the matrix A = (a,b,...,m) is a pre-Q matrix and it is has exactly one associated Q-form 
with the ui,...,Uk appearing in this order. 

5.4 Comments 

1. The best way to state and prove this result is in terms of ternary relations. Furthermore, 
in this more general form the proof becomes more transparent since one is able to use 
the ternary relation on the rows and the Ui to define a binary relation on the rows and 
then one is able to use this well-established theory to complete the proof. 

2. The result is both necessary and sufficient since if A is itself pre-Q, then we can take 
k = m and the ui, ...,Um to be all the rows of A in an order of a ß-form of A. The 
conditions then become vacuously true. 

3. Theorem 1 is a special case of Theorem 2 when k = 2 and for any two rows ui and U2 
of J4 the conditions are valid. 

42 



5. SOME RESULTS ON MATHEMATICAL SERL\TION WITH APPLICATIONS 

4. Most importantly, the uniqueness of the resulting ß-fonn of A is only relative to the order 
of the Ml,..., WA;- If the conditions held for another order of these then another (2-form 
would result. Again if another set of rows could be used then another ö-form might 

result. 

Definition. A set of rows ui, ...,ujt satisfying the conditions of the theorem is caUed a fixing 
k-string or a fixing string for A. The least k for which >1 has a fixing Â:-string is called the 
fixing number of A and denoted p = p{A). If A has m rows then r = r(^A) = m - p is called 
the linear rigidity of A. Notice that the least possible value for the fixing number is 2 and that 
consequently the greatest possible value for the linear rigidity is m - 2. 

Consider the following formal examples: 

/I 0   0   0   0 \ 
0 10   0   0 
0 0   10   0 
0 0   0   10 

V 0 0   0   0    1 / 

. 1 OOOx 
'   1100 

0 110 
00 1 1 
000 1 V 

^100^ 
'  1 1 0 

111 
0 1 1 
00 1 

/111 OOOx 
111100 

V 
0 11110 
001111 
0001 1 1 

with, respectively, parameters 

p = 5,r =0;p = 4,r = l;p = 3,r = 2;p = 2,r = 3. 

5.5   Archaeological examples 

In the case of the 10 x 5 abundance matrix recording five types of painted pottery from the 
undisturbed stratigraphically ordered levels at Awatovi, one can show that the pair of rows 
corresponding to the levels g,m is a fixing pair for the whole ß-matrix. This is the smallest it 
could possibly be and therefore the rigidity is 10 - 2 = 8 i.e. the most it could possibly be. It 
is in this sense that I want to say that this data matrix is very 'strongly' seriated. Another way 
of looking at this is that if initially the archaeologist had from some external evidence argued 
that site m was definitely earlier than site g (it is obvious here but imagine the data divorced 
from the stratigraphy) then each other site is uniquely seriated with respect to these two! 'The 
relative clock is defined by these two.' 

In the case of the 6x 7 abundance matrix recording proportions of different types of microliths 
from Mesolithic sites spread over a wide area of southern England, one can show that there are 
no fixing pairs and no fixing triples of rows. The four rows corresponding to the sites by, 62. ^4 
and 65 is a defining quadruple of rows (not all quadruples do so). Thus the fixing number is 4 
and the rigidity is 6 - 4 = 2. This is a low value and again it is in this sense that I want to say 
that this data matrix is very 'loosely' seriated. It takes four of the six rows uniquely to seriate 
the other two! At least in this case we have some external evidence to quote, for the ^''C dates 
of the sites 61, 62 and 65 are 7500bc, 7000bc and 6400bc, respectively. It would be nice to have 
the fourth date but probably more importantly my result points to getting data from more sites 
to try to decrease the fixing number in an enlarged set (more data are available, see the article 
by Jacobi et al. 1980). 

Perhaps the approach outlined here will encourage us to accept external evidence for the 
chronological ordering of sites and to incorporate it into the seriation process in some minimal 
way such as suggested here. 
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