
15

Standardisation in computer graphics: an
introduction to GKS

K. W. Brodlie
Department of Computer Studies, University of Leeds

15.1 Introduction

One of the major developments in computer graphics in the 1980s has been the emergence of
the Graphical Kernel System, or GKS, as an International Standard—ISO 7942 (ISO 1985).

Why was GKS developed? To answer this question, it is necessary to return to the mid-1970s.
At that time there was a large nimiber of basic graphics packages—for example, GINO-F and
GHOST were prominent in the UK, while other packages were more popular in other countries.
This growth in basic graphics packages was a hindrance, not a help, to computer graphics,
because it prevented the development of portable graphical applications software. Suppose
someone wanted to develop some contouring software. He would write this in terms of his
favourite local package—say GHOST. But should he subsequently wish to transfer this software
to another site, then it would only run unchanged at another site which supported GHOST; if
another basic package was supported, then a certain amount of editing, possibly even redesign,
would be required.

So it was decided in the mid-1970s that computer graphics as a discipline had reached a
mature state, and that its development was being hampered by lack of standards. Accordingly
national activities were set in motion to create proposals for a graphics standard. Two major
offerings were forthcoming: the CORE system from the ACM SIGGRAPH group in the US, and
GKS from a DIN graphics woricing party in West Germany. An ISO woricing group was formed
in 1978 to woric towards a single international standard. GKS was chosen, mainly on the basis
of its relative compacmess as compared with the CORE. There began an intensive technical
review of GKS, in which the US, British, Dutch and French standards bodies played major
rôles as well as the Germans. A Draft ISO standard was agreed in 1982, and the fully-fledged
ISO standard followed in 1985.

It has already made a significant impact. Several good implementations of GKS are now
available, and the two leading computer manufacturers—^IBM and DEC—both offer a GKS
implementation on their principal ranges of computers. Thus it is now possible to recommend
to users of computer graphics in application areas such as archaeology to write their graphical
programs in terms of GKS—in the confidence that such programs can be transported to
colleagues anywhere in the world and have a realistic chance of finding a GKS implementation
on which to run.

The idea of this paper is to introduce archaeologists to the main concepts of GKS, and to
encourage them to find out more about GKS so they can use it in their computing work.

155

K. W. BRODLE

15.2 GKS

GKS is a functional specification of a kernel system for computer graphics. Key words in
that sentence are 'functional' and 'kernel'. By 'functional', it is meant that GKS describes a
set of functions for graphics programming—functions that are independent of any particular
programming language. There is a separate standard which wiU specify the mapping of the
GKS functions to a number of common programming languages: the FORTRAN binding, as it is
called, is almost settied (ISO 1986a). In this way, the same concepts wUl apply in all graphics
work, independenüy of the programming language being used.

By 'kernel', it is meant that GKS just provides those functions necessary for the drawing of
pictures: any functions which can be built from simpler functions are therefore not included.
For example, GKS includes a function for drawing lines (POLYLINfE), but not one for drawing
axes, or contour maps, because these can be drawn from more elementary functions. GKS is
concerned only with 2D graphics, but an extension to 3D, called GKS-3D, will soon appear as
a standard (ISO 1986b).

The fundamental principles of GKS can be described quite simply. A user creates a picture
using a set of building blocks, known as output primitives. There are six output primitives in
GKS: polyline, polymaricer, text, fill area, cell array and GDP—these are described in more
detail in tiie next section. These primitives are defined in world coordinates—a coordinate
system chosen by the user to be appropriate to the problem. For example, a geographer might
choose to define his picture in National Grid coordinates. The appearance of the output is
controlled by a number of attribute functions, such as character height.

Output in GKS is displayed on woricstations, which is the GKS term for a graphical device.
The process of transforming fk)m world coordinates to device coordinates is done in two steps.
In the first step, the world coordinates are normalised: the user defines a window, which is a
rectangular region in world coordinates containing the picture to be displayed; the user also
defines a corresponding viewport, which is a rectangle within a unit square. Points within the
window are mapped to corresponding points in the viewport. Thq user may define several
window-viewport mappings, and so put together a composite picture in the unit square. By
default, this unit square is mapped automatically to the largest square area on the workstation
display surface.

GKS has a number of additional facilities. Primitives can be grouped together in segments;
segments can be highlighted, deleted or transformed—allowing a form of animation on suitable
devices. There are a number of graphical input functions, such as locator which allows
coordinate positions to be identified on tiie display surface and returned to the user program.
There is a facility for storing graphical data in a file—called a graphical metafile—for long term
storage, or transfer to another site.

15.3 GKS output facilities

As mentioned above, pictures in GKS are composed from six output primitives. These primitives
are as follows:

POLYLINE Draws a connected sequence of lines through a given set of points.

POLYMARKER Draws a marker symbol at a given set of points.

TEXT Draws a suing of characters at a given position.

156

15. STANDARDISATION IN COMPUTER GRAPHICS: AN INTRODUCTION TO GKS

FILL AREA Draws a polygonal area defined by a given set of points.

CELL ARRAY Draws an image made up of a grid of coloured rectangles.

GDP Draws a generalised drawing primitive—an implementation-dependent fa-
cility allowing access to special hardware features, such as circle drawing.

The actual appearance of the output primitives is controlled by a number of attributes.
Polyline, polymarker, text and fill area each have their own set of attributes. A novel concept
in GKS is the idea of bundled attributes. Consider, for example, line drawing. GKS recognises
three aspects of lines: linetype, Unewidth and line colour. But it is realised that different
devices have different capabilities for displaying lines—for example, a monochrome device
such as a Tektronix 4010 can use different linetypes, but not different line colours, while on
colour raster displays, colour and hnetype can be used, but possibly not linewidth. A user
may prefer therefore not to describe different lines by these aspects explicitly, but leave it to
GKS to choose the best representation on a particular workstation. Thus GKS allows a user
to associate a polyline index with each polyline: this acts as an index into a bundle table (one
for each workstation) which holds different representations of lines suitable for the workstation
concerned. Similarly, the appearance of the polymarker and fill area primitives is controlled by
assigning a polymarker or fill area index. Text also has an index, but in addition there are a
number of other text attributes—controlling for example the character height and orientation.
These other attributes are essentially geometric, and properly part of the description of the
picture, rather than the representation of the picture on a particular woricstation.

15.4 GKS transformations

The output primitives describe a picture in world coordinates. GKS provides a number of
transformation functions which allow the world coordinate picture to be displayed on the surface
of any particular workstation. This is done in a two-stage process, using a normalised space as
an intermediary: this normalised space is the unit square, and its coordinates are referred to as
normaUsed device coordinates, or NDC for short.

The user defines a window, which is a rectangle in world coordinates containing the picture;
and he also defines a corresponding viewport, which is a rectangle in NDC onto which the
window is to be mapped. This is known as a normalisation transformation. A GKS program can
use several normalisation transformations, mapping different windows onto different viewports
and building up a composite picture in NDC.

By default, the whole of NDC space is mapped to the largest square area on a workstation's
display surface. But, if required, a workstation transformation can be defined to give user
control over this mapping, on a workstation-by-woricstation basis.

15.5 GKS input facilities

Input devices in GKS are divided into six classes, according to the type of information they
return. These classes are

LOCATOR Returns a coordinate position; typically this will be implemented in practice
by a cursor which is moved by the operator to a required position and then
triggered. The point located in this way is transformed back to world
coordinates and its position returned to the user program.

157

K. W. BRODLIE

STROKE Returns a sequence of coordinate positions.

VALUATOR Returns a single real value—^typically this will be implemented by dis-
playing a scale on the display screen, with an arrow indicating the current
value. The operator moves the arrow up and down the scale using a mouse,
say.

CHOICE Returns a single integer value.

STRING Returns a string of characters input by the operator.

PICK Described in section 15.6 on segments.

Notice that the input devices are classified, not by their physical type such as cursor, keyboard,
etc., but by the form of data they return. For this reason, they are often referred to as logical
input devices.

Input devices can be used in three different ways, but most GKS implementations only support
one mode, known as REQUEST mode. There are six functions: REQUEST LOCATOR,
REQUEST STROKE, etc. To execute REQUEST LOCATOR, a GKS program halts, and
waits until the operator has triggered the locator input before continuing—a good analogy is a
FORTRAN READ statement where a program waits for data to be entered, and continues when
the 'carriage return' trigger is hit.

15.6 Segments

It is sometimes useful to be able to group a number of output primitives together as a single
imit, so that some operation may be performed on the unit as a whole—^for example, in a picture
composed of various archaeological exhibits, each exhibit might be stored as a single entity, or
'segment' in GKS terminology. Each segment can have a number of attributes: for example, a
segment can be highlighted, or not; a segment can be visible, or invisible. A particularly useful
attribute is a segment's transformation matrix: this is by default the identity matrix, but can be
changed to allow the scale, position and orientation of a segment to change dynamically.

Another important attribute is segment detectability. It is often useful to select from the
picture on a graphics display a particular segment of output—in the example above, to select a
particular exhibit. GKS has a class of input device known as PICK: this is typically implemented
as a cursor which the operator uses to identify a particular segment, by placing the cursor over
some primitive belonging to that segment. In a cluttered picture, the operator can be helped by
making only relevant segments detectable; a REQUEST PICK operation wiU return the name
of a segment which is detectable, and 'closest' to the cursor position.

15.7 Graphical metafiles

Another aspect of computer graphics which has been addressed by the standards bodies is the
storage of pictorial information. GKS has a special type of woricstation known as metafile
output: primitives sent to this workstation are stored on a file on disc. There is a corresponding
metafile input workstation which allows metafiles to be read back into GKS and their contents
displayed. Note however that GKS does not prescribe the format of metafiles; this is considered
in a separate standard known as the Computer Graphics Metafile (ISO 1986c), which is close
to being ratified.

158

15. STANDARDISATION IN COMPUTER GRAPHICS: AN INTRODUCTION TO GKS

15.8 Conclusions

This paper has given only a brief introduction to GKS. There are two excellent books on GKS
which are recommended as further reading. The first is Introduction to the Graphical Kernel
System (GKS) (Hopgood et al. 1986), which gives an easily read overview of GKS; the other
is Computer Graphics Programming: Graphical Kernel System (Enderle et al. 1986), which is
better used as a reference work.

A number of implementations of GKS are already available. Of particular interest to the
academic community is GKS-UK, an implementation written jointly by the SERC at the
Rutherford Appleton Laboratory and by ICL. This is being distributed to UK University
Computer Centres by a GKS Support Team, based at the Universities of Edinburgh, Leicester
and Salford. The implementation is also being marketed commercially, and further details are
available from the author.

It is important to emphasise that GKS is a kernel system. Some people are disappointed
to find that GKS does not have the facilities they are accustomed to in the package they are
currendy using, such as axes-drawing for example. For this reason, those developing graphical
software in various application areas such as archaeology may be deterred from using GKS as
their base system. It becomes vital that there is a widely available library of graphical routines
based on GKS and containing routines for axes drawing, curve and function drawing, contouring
and other common, inter-disciplinary operations. This already exists in a limited way in the
NAG Graphical Supplement, which can be used in conjunction with a number of different basic
graphics packages including GKS. It is possible that a revised version of the Supplement, based
purely on GKS, will be developed by NAG.

References

ENDERLE, G., K. KANSY, & G. PFAFF 1986. Computer Graphics Programming: GKS—The
Graphics Standard, Springer-Veriag, Beriin.

«

HOPGOOD, F. R. A., D. A. DUCE, J. R. GALLOP, & D. C. SUTCLIFFE 1986. Introduction to the
Graphical Kernel System (GKS), Academic Press, London.

ISO 1985. Information processing systems—Computer graphics—Graphical Kernel System
(GKS) functional description, ISO 7942—1985, ISO.

ISO 1986a. Information processing systems—Computer graphics—Graphical Kernel System
(GKS) language bindings—Part I: FORTRAN, ISO DIS 8651/1—1986, ISO.

ISO 1986b. Information processing systems—Computer graphics—Graphical Kernel System for
three dimensions (GKS-3D) functional description, ISO DP 8805. 2, ISO.

ISO 1986c. Information processing systems—Computer graphics-^^etafile for the storage and
transfer of picture description information., ISO DIS 8632, ISO.

159

