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19.1    Introduction 

It is common nowadays to survey archaeological sites, whether topographicaUy or electro- 
magneticaUy, on a regular grid. With modem EDM machinery and the mathematical speed of 
today's micros, however, it is possible to use other methods of survey which are less labour- 
intensive. 

The authors have been looking at some experimental techniques for examining and manip- 
ulating gridded and non-gridded survey data. Most of the programs which we have used for 
this work have been written for use on many different machines—indeed they will run on most 
microcomputers. The graphics programs used for output display are again written for portability, 
though the different capabilities of the many machines now on the çiarket make it difficult to 
produce truly universal programs. 

hi this paper we offer one technique which we have found useful in our work of manipulating 
gridded data. It is a method of describing objectively the 'quaUty' of the survey, and is, in a 
sense, a measure of the way the survey fits the site: we caU it the Gradient Coefficient (see 
section 19.2). 

We arrive at two numbers by measuring the gradient in botii directions (that is, x and y) at 
each datum point of a grid, and producing the mean of the gradients and tiie standard deviation 
of tiie gradients. The mean of these gradients simply tells us whetiier or not, and by how much, 
our site has a overall slope. This number wiU vary over a wide range depending both on the 
amount of slope and tiie size of tiie units used for measurement. The Gradient Coefficient, 
however, is a number limited in range from zero to one, and it expresses tiie overaU amount of 
change between each datum and its neighbours. It is, to put it simplistically, a measure of die 
'bumpiness' of tiie data. This is not to say tiiat we are expressing tiie bumpiness of tiie site: if 
a site is surveyed well according to our criteria, tiien its Gradient Coefficient wiU be good (tiiat 
is, small) and the data will, we claim, describe the site adequately. 

The Gradient Coefficient can be described simply as tiie ratio of tiie variance of tiie gradients 
to the variance of the heights. Its derivation is given as follows: 

Consider data values Xij on a regular grid nxm, with 1 < z < n and 1 < j < 
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The variance of the X 's can be found using the formula 

Var<X) = ^^ - r^L^ ^ 
nm V   nm 

Now for each internal point (2 < i < n,2 < j < m) define two gradients: 

Gi,j,i = Xij — Xi-ij 

Gi,j,2 = Xi^j — Xij-i 

The mean gradient, G, is defmed by: 

^ 2 • (n - l)(m - 1) 

and the variance is defined by: 

Var<G) = E T^^^^=^^4#^ - ^ ^-^ 2*(n- l)(m- 1) 

It can be shown that 
0 < Var(G) < 4Var(X) 

hence define the Gradient Coefficient GC by: 

Var(G) 
GC = 

4 * Var(X) 

so that 
O <GC<1 

19.2   Use of the Gradient Coefficient 

Let us now demonstrate the use of the coefficient by examining some simple artificially- 
generated geometric shapes. The first, most obvious, example is the flat surface, giving a 
GC of zero, and a mean gradient also of zero. An inclined plane would, of course, give a GC 
again of zero, but the mean gradient would give away the fact that it is a slope. 

The most bumpy surface imaginable, we think, is one where the gradient direction reverses 
at each datum point. This is easily produced with a checkerboard pattern of, say, ones and zeros 
for our height data. The visual effect is a difficult one to show as a wire diagram (Fig. 19.1), for 
it produces regularity in aU directions. When contoured, this data reveals a series of concentric 
circles, which alternate in vertical direction (Fig. 19.2). The GC of this data is one, and 
represents our worst possible case. 

One would be very surprised to find such a value in real data; a better standard with which 
to make comparisons is a random data set, or 'white noise', which gives a GC of around 0.7 
(Figs. 19.3 & 19.4). 

As a further example, we have concocted a simple shape, which is an arbitrary surface seven 
points square (Figs. 19.5 & 19.6). It rises fairiy gently at the middle, and gives a GC of 0.54 
and a mean gradient of 0.24. We would describe this as a data set which is fairly bumpy, with a 
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Fig. 19.1: 'Egg box": Wire diagram 

Fig. 19.2: 'Egg box': Contour plan 
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Fig. 19.3: Random noise: wire diagram 

Fig. 19.4: Random noise: contour plan 
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Fig. 19.5: Concocted shape: wire diagram 

Data type Gradient Mean 
Coefficient Gradient 

Flat plane 0.0 0.0 
'Egg box' 1.0 0.0 
White noise 0.71 2.4 
Concocted shape 0.54 0.24 

Table 19.1: Gradient Coefficient for simple examples 
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Fig. 19.6: Concocted shape: contour plan 
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Fig. 19.7: Wire diagram: Sibwll Wood 

slight slope, and we would suspect that this 'site' should be surveyed on a finer grid to produce 
a smaller GC. 

Let us turn to real archaeological data. Data from our first site, SibwU Wood was kindly 
provided by Qwyd-Powys Archaeological Trust, and we deliberately accepted no prior infor- 
manon concerning the site, for reasons described in another paper (Spicer, this volume) It 
appears to be an enclosure on a fairly steep slope (Fig. 19.7). Its GC (of 0.06) teUs us that 
It is not too variable in gradient, and we might provisionaUy say that the survey method was 
adequate to describe the site's features. 

Using a simple and fairiy rapid contour program (Fig. 19.8) gives us litüe information about 
the enclosure, and the obvious next step was to remove the overaU slope to leave only the 
'high frequency' information: namely the banks and/or ditches, together with noise We 
subjected the data to a simple local averaging low-pass filter, which gave us a picture of 
just the slope (Figs. 19.9 & 19.10)-K)ne might describe this flippanüy as the 'pre-enclosure' 
surface. Subtraction of the two data sets produces a data set of residuals, and we see a better 
picture of the enclosure, this time on a flattish base (Figs. 19.11 & 19.12). Applying our test 
to these data (Table 19.2) shows that we now have only a slight slope, with a mean gradient 
value of -4.05, and the GC figure of 0.06 for both the original and filtered data confions our 
belief that the survey fits the site well. The site would have needed many changes of survey 
station down the hiU-side, each set-up contributing errors--or 'noise'—to the survey This is 
amphfied when the slope is removed from the data. Even so, the 'noise value' of the residuals 
(0.27) is still remarkably low. 

So far we have demonstrated this technique as it were retrospectively: that is, we have 
applied it to data after the whole site has been surveyed. If the value of GC were found to be 
unsansfactory, then all we could do is learn from our mistakes in time for our next survey But 
let us see if it is possible to use our method to predict results. We turn back again to artificial 
data—a mathematicaUy-generated cone, sitting, or rather floating, on its side in a puddle.  A 
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Fig. 19.8: Sibwll Wood: contour plan 

Object/site 
name 

Gradient Mean 
coefficient    gradient 

Sibwll Wood 0.06 
SibwU filtered 0.06 
Sibwll residual    0.27 

-28.29 
-22.20 
-4.05 

Table 19.2: GC for data from Sibwll Wood 
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Fig. 19.9: SibwU Wood: wire diagram filtered 

Object/site 
name 
Cone perfect 
Cone random 1 
Cone random 2 
Cone random 3 

Gradient 
coefficient 
0.08 
0.67 
0.39 
0.24 

Mean 
gradient 

0.0 
0.0 
0.0 
0.0 

Table 19.3: GC for cone data 

control data set was derived on a grid 25 by 50 (Figs 19.13 & 19.14). 

For this analysis we effectively sampled an infinitely large data set randomly—not on a 
grid—by mathematicaUy calculating the height value, using different sample quantities They 
are illustrated as contours in Figs. 19.15 to 19.17 and as surfaces in Figs. 19.18-19.20. Cone 
1 was derived from 100 random points, cone 2 from 200, and cone 3 from 800 points We 
reconstituted the shape by recreating a 10 by 20 grid fix)m the random points using a simple 
plane-fitting method. The results of deriving their Gradient Coefficient are shown in Table 19 3 
When we take a look at the diagrams, we see how unlike the original most cases are. Indeed, 
the diagram and the GC figure for the first random sample reveal that it is much closer to pure 
noise than to our cone. Provisional results from this recreation process indicate a rule of thumb 
tiiat tiie number of sampled points must at least equal Üie number of grid squares required for 
the final result in order to get any recognisable shape. Work is currentiy continuing to pursue 
this investigation further. 

Our formula for tiie Gradient Coefficient is so easily applied by a prospective surveyor that 
one might use it to judge a number of small sample surveys taken as a preliminary investigation 
in order to discover what grid interval most suits tiie site. So we are in a position now to 
examine a 'what if?' scenario, by taking a look at a real archaeological site—Symon's Casüe, 
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Fig. 19.10: SibwU Wood filtered: contour plan 
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EXPERIMENTS WITH GRIDDED SURVEY DATA 

Fig. 19.11: SibwU Wood residuals: wire diagram 

Object/site 
name 
Symon's Castle 0.16 
Symon's filtered 0.16 
Symon's residual    0.63 

Gradient 
coefficient 

Mean 
gradient 

8.06 
8.03 

-0.04 

Table 19.4: GC for cone data 

Powys (the data for which has been provided by Jeremy Huggett and Chris Arnold) We find it 
has a GC of 0.16. a low value. How can we test to see if this reflects the quality of the survey^ 

If the data is smoothed, the new GC is still 0.16. Fig. 19.21 shows the site, using panels Ut 
as If from a low sun, and we observe the shape of the motte clearly, with more than a hint of 
the raised defence encircling the flat top. Large features like the ditch and the baUey are clearly 
shown, but so are smaller details, like the low rectangular earthwork system in the next field 
noted on the ground at the time of the survey, but shown only as a complete rectangle by this 
display. •' 

When we remove the smoothed surface, and leave the residuals, the small features are still 
clearly visible (Fig. 19.22), though the now flat surface has acquired extra 'noise', a fact borne 
out by a considerable rise in the.Gradient Coefficient (Table 19.4). We would expect a large- 
scale site survey of this kind to contain errors. There are a number of trees, and an awkward 
and dangerous quarry slope to contend with, as weU as the nonnal problems of maintaining 
level readings over a large height difference. Noise of this kind superimposed on a steep slope 
would not be revealed by the Gradient Coefficient, hence the need to perfomi residual filtering. 

Supposing, now, that this survey, seventy or so metres square, and representing over 5000 
readings (and about 250 surveyor-hours), had been taken at two-metre intervals instead— 
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Fig. 19.12: SibwU Wood residuals: contour plan 

Fig. 19.13: 'Perfect' cone: wire diagram 
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Fig. 19.14: 'Perfect* cone: contour plan 

Fig. 19.15: Cone 1: contour derived from 100 random points 
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Fig. 19.16: Cone 2: contour plan derived from 200 random points 

Fig. 19.17: Cone 3: contour plan derived from 800 random points 
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19. EXPERIMENTS WITH GRIDDED SURVEY DATA 

Fig. 19.18: Cone 1: panelled surface derived from 100 random points 

Fig. 19.19: Cone 2: panelled surface derived from 200 random points 
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Fig. 19.20: Cone 3: panelled surface derived from 800 random points 

Fig. 19.21: Symon's Castle: lit panelled surface 
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Fig. 19.22: Symon's Casüe residuals: lit panelled surface 

Object/site Gradient Mean 
name coefficient gradient 
Symon's div 2 0.23 8.06 
Symon's div 3 0.28 14.89 
Symon's div 5 0.35 20.16 
Symon's div 10 0.55 39.37 

Table 19.5: GC for sampled data from Symon's Castle 

Kes T92fZT HT^rlcff r " """^•'^"^- "°" "^" ''"^ "^ "°- -^ ^hese features? 
IT      U rcT     .        u      "^ ''"' '''"^'^ °^^^'"Pl'"g '^'^ d^^^ ^t ^'^ following fractions- 
halves, thirds, ßfths and tenths. Already at two-metre intervals the GC has risen, though 
the small features are still visible, indicating perhaps that two-metres would be the absolute 
maximum mterval to use. At three-metre intervals the rectangular feature is unrecognisable 
(though some activity is indicated by different-coloured panels in the vicinity). Note how the 
mean gradient as well as the Gradient Coefficient rises progressively as we reduce the resolution 
of the data. What we are seeing here is the steady removal of the ditch, and the appearance of 
the overall slope between motte, bailey, and surrounding fields. 

19.3   Discussion 

We have seen the application of the Gradient Coefficient to artificial and true archaeological 
topographical data. Whilst it has not been possible so far to give absolute recommendations as 
to what constitutes a good or bad figure, we fcel that even as a relative measure it is valuable 
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Fig. 19.23: Symon's Casüc: lit panelled surface—2 metre grid 

Fig. 19.24: Symon's Casllc: Hl panelled surface—3 metre grid 
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Fig. 19.25: Symon's Castle: lit panelled surface—5 metre grid 

Fig. 19.26: Symon's Casüe: lit panelled surface—10 metre grid 
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Fig. 19.27: Symon's Casue: lit modelled surface 

in assisting the clioicc of size. For the last site discussed, the value of 0.16 for the GC is 
small enough to indicate a satisfactory survey, which is demonstrated by the detail reproduced 
in Fig. 19.27. 
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