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Bayesian Seriation as a Tool in Archaeology 

Ulrich Halekoh and Werner Vach 

Abstract 

The seriation of objects based on findings or traits accompanying them is a major task in archaeological research. 
An example is the chronological ordering of graves based on the gravegoods found therein. Correspondence analysis 
is a well established tool to solve this task but has only limited capability to show the accuracy of the provided 
seriation. We introduce a new approach based on a stochastic model and a Bayesian analysis which allows for a 
given dataset not only to determine an estimate for the underlying order, but also to asses its variability. This hints to 
subgroups of graves that are nearly exchangeable with respect to their relative chronological position and hence 
contributes to prevent over-interpretation. We also provide means to characterize traits that carry substantial 
chronological information and may be useful for the classification of new graves. Additionally, our approach may 
enable the archaeologist to incorporate prior information as sex-specific classifications of graves or their 
stratigraphic relationships.  

1 Introduction 

Seriation or the reconstruction of the chronological 
order of finds is a major task in archaeological 
research. Lacking direct information (e.g. C14 
analyses) one has to derive a chronological order by 
the combination of traits in the finds. Such an 
analysis is based on the assumption that each trait 
occurs only in a subperiod of the time covered by all 
findings and that within this subperiod its frequency 
first increases and then decreases (Robinson 1951, 
Mayer-Oaks 1955). 

One well established exploratory tool for this task is 
correspondence analysis (Benzecri 1973, Hill 1974, 
Greenacre 1984, Baxter 1994). Although it is capable 
of detecting an underlying dominant chronological 
order it does not allow to draw conclusions on the 
precision of an estimated order and due to the lack of 
an explicit model it remains often unclear how to 
incorporate available additional information. To 
overcome these difficulties we present in this paper a 
new approach based on a stochastic model and a 
Bayesian analysis. 

We introduce first the stochastic model and our 
choice for the prior distributions of the parameter 
necessary for the application of the Bayesian method. 
Then we focus on the analysis of the posterior 
distribution, first with respect to the chronological 
order and secondly with respect to the identification 
of traits most useful for chronological classification. 
Finally, we illustrate the analysis with data from two 
excavation fields and demonstrate by an artificial 
example an important difference between our 
approach and correspondence analysis if we analyse 

data carrying more information than only a 
chronological order. 

2 The method 

In general, a Bayesian analysis consists in specifying 
a stochastic model P(Y|θ), , describing the probability 
to observe the data Y in dependence of a parameter 
vector θ and the specification of a prior distribution 
P(θ). The latter reflects our knowledge on the 
parameter θ prior to observing the data. Our 
knowledge on the parameters after observing the data 
is then given by the so called posterior distribution, 
i.e. the distribution of the parameters given the data. 

This can be derived by application of the Bayes rule, 
i.e. 

𝑃(𝜃|𝑌) =
𝑃(𝑌|𝜃)𝑃(𝜃)

∫ 𝑃(𝑌|𝜃)𝑃(𝜃)𝑑𝜃. 

Any inference is based on this posterior distribution. 
In our setting the data are given as a binary 

incidence matrix  

𝑌: = �𝑌𝑖,𝑗�𝑖=1,…,𝐼;𝑗=1,…,𝐽
 𝑤𝑖𝑡ℎ 𝑌𝑖,𝑗  ∈ {0,1},  

where Yi,j = 1indicates the presence of trait j at object 
i and we have overall I objects and J traits. 

The stochastic model assumes, that all incidences Yi,j 
are independent given θ and that 
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P(Yi,j = 1| θ) = gi pRi,j , 

Where Ri denotes the chronological position of the ith 
object, pr,j is the probability to observe trait j at 
chronological position r , and gi is a quality indicator 
for each object i, representing for example the 
richness of a grave. Hence the parameter vector θ  = 
(g, R, θp) consists in our setting of three subvectors. g 
= (g1,…,gI) is the vector of the quality indicators and 
R = (R1,…,RI) is the rank vector representing the 
chronological order. The third vector θp contains for 
each trait j the parameters pr,j describing the course of 
the incidence in time, which are defined for 𝑟 ∈
𝑂: {1 − 𝐼, … ,2𝐼}. We assume an unimodal course in 
time which is described by additional auxiliary 
parameters 𝑎𝑗, 𝑏𝑗, 𝑐𝑗  ∈ 𝑂 with 𝑎𝑗  ≤ 𝑏𝑗  ≤ 𝑐𝑗  and 
𝑝𝑗<𝑎 > 0,  𝑝𝑗>𝑐 > 0 such that  

𝑝𝑟,𝑗 < 𝑝(𝑟+1),𝑗 for  𝑎𝑗 − 1 ≤ 𝑟 < 𝑏𝑗, 

𝑝(𝑟−1),𝑗 > 𝑝𝑟,𝑗 for 𝑏𝑗 < 𝑟 ≤ 𝑐𝑗 + 1, 

𝑝𝑟,𝑗 < 𝑝𝑗<𝑎 for 𝑟 = 1 − 𝐼, … , 𝑎𝑗 − 1,  

𝑝𝑟,𝑗 < 𝑝𝑗>𝑐 for 𝑟 = 𝑐𝑗 + 𝐼, … ,2𝐼. 

i.e. we require that within the interval [aj,cj] the 
parameters pr,j are first increasing, culminating at 
bjand then decreasing. This is in accordance with the 
expectation in most archaeological settings that a 
specific trait comes into use at some point in time, 
becomes more and more widespread but is 
superseded by another trait and finally dies out. 
Outside the interval [aj,cj]  we allow small incidences 
𝑝𝑗<𝑎and  𝑝𝑗>𝑐, respectively, to account for some 
violation of this strong expectation, for example due 
to a misclassification of a trait or the delayed 
occurrence of a trait due to passing it over several 
generations in a family. Note that we avoid any 
assumption on a uniform development in time; the 
traits are allowed to have different lifespans, a rapid 
or slow appearance or dying out, and several traits 
can occur or die out at the same time. Additionally, 
by defining the pr,j on an interval larger than the span 
of the data we achieve a natural solution to the 
boundary problem. 

We turn now to the specification of the prior 
distributions for the parameters. Having no 
substantial prior knowledge we try to use 
uninformative priors in order to reflect our state of 
vague prior information. The components gi of g are 
assumed to be independently and identically 

distributed uniformly on the interval [0,1]. R is 
assumed to be uniform on all permutations of  
{1,…,I} g,R and the components of θp for different 
traits are assumed to be independent. The prior 
distribution of (𝑝𝑟,𝑗)𝑟∈𝑂  is roughly spoken uniform 
on all vectors with unimodal structure. The actual 
implementation of this notion is described with the 
auxiliary parameters via successive conditioning. We 
first give the unconditional prior distribution of aj and 
cj, then conditionally on these parameters that of bj , 
then the prior distribution of pbj,j given aj,bj,cj, then 
the prior distribution of 
𝑝𝑎𝑗,𝑗 , … , 𝑝𝑏𝑗−1,𝑗 , 𝑝𝑏𝑗+1,𝑗 , … , 𝑝𝑐𝑗,𝑗 given 𝑝𝑏𝑗,𝑗  and 
aj,bj,cj, and finally the distribution of 𝑝𝑗<𝑎and  𝑝𝑗>𝑐 
given 𝑝𝑎𝑗,𝑗  and 𝑝𝑐𝑗,𝑗  respectively. The prior of (aj,cj)is 
uniform on all pairs of integers in O. bj is uniformly 
distributed between aj and cj . The maximum 𝑝𝑏𝑗,𝑗   is 
assumed to be uniformly distributed on [0,1]. The 
vector (𝑝𝑎𝑗,𝑗 , … , 𝑝𝑏𝑗−1,𝑗 , 𝑝𝑏𝑗+1,𝑗 , … , 𝑝𝑐𝑗,𝑗)is uniformly 
distributed on all vectors obeying the monotonicity 
and unimodality restriction. Finally, the parameters 
𝑝𝑗<𝑎and  𝑝𝑗>𝑐 are uniform on the intervals [0, 𝑝𝑎𝑗,𝑗], 
and [0, 𝑝𝑐𝑗,𝑗] respectively. 

3 Analysis of the posterior distribution of θ 

In the analysis of the posterior P(Y|θ) we will first 
focus on the analysis of the most interesting aspect, 
the chronological order, i.e. we analyse the marginal 
posterior distribution of the ranks R. It is not possible 
to compute this distribution analytically. However, 
we are able to produce a sample of rank vectors from 
this distribution via application of Markov chain 
Monte Carlo methods (Gelfand and Smith 1990, 
Geyer 1991, Gilks and Wild 1992, Gilks et al. 1996). 
Details are given in Halekoh and Vach (in prep). 
Description of the posterior is then based on this 
sample. 

3.1 Checking for multimodality 

It may happen that there are two distinctly different 
orders underlying a data set. In this case the posterior 
distribution has two modes, i.e. there a two 
subregions in the space of all orders with high 
probability mass, but the space between the two 
regions has low probability mass. It is important to 
detect this situation because otherwise an analysis 
may yield misleading results. To detect 
multimodality, we need to introduce a distance 
measure on the rank vectors. 
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For two rank vectors R and 𝑅� we use the L1-norm 
distance divided by I, i.e. 

𝑑 ∗ �𝑅,𝑅�� ≔
1
𝐼
��𝑅𝑖 − 𝑅�𝑖�.
1

𝑖=1

 

It can be interpreted as the numbers of positions 
which each object has to move on average to change 
one directed order into the other. However, the 
stochastic model and the seriation problem itself is 
symmetric with respect to the direction of the object 
order. Hence each rank vector R represents 
simultaneously a second rank vector 𝑅�, which 
represents the same order with opposite direction, i.e. 

𝑅⃖�𝑖 = 𝐼 + 1 − 𝑅𝑖  

Hence we have to define the distance of two rank 
vectors as 

𝑑�𝑅,𝑅�� ≔ min�𝑑 ∗ �𝑅,𝑅��, 𝑑 ∗ �𝑅,�⃖�� 𝑅���. 

Now in order to check for multimodality we 
determine for each sampled vector the proportion of 
sampled rank vectors within its neighbourhood of 
diameter λ as a nonparametric estimator for its 
probability. A mode is then defined as a rank vector 
for which all rank vectors in its neighbourhood show 
a smaller probability. Then we can consider the 
number of modes as a function of λ. Checking for 
multimodality is then possible as in the setting of 
univariate densities (Silverman 1981): unimodality 
can be assumed if several modes occur only for very 
small values of λ. 

3.2 Analysis of the object order 

The most simple way to describe the posterior 
distribution of the object order is to consider the 
distribution of the rank of each object. However, this 
needs some care, as due to the symmetry of the 
problem the same order may be represented by two 
different rank vectors R and 𝑅⃖� in our sample. In the 
case of a single mode one can solve this problem by 
selecting one of the two possible directions of the 
mode order - which may be either artificially chosen 
or based on external archaeological information - and 
choosing for each order in the sample that rank vector 
with minimal distance to the directed mode order. 

After directing each sampled rank vector we can 
speak of the distribution of the chronological position 

of each object. This distribution is easily graphically 
summarized by depicting for each object the boxplot 
of this distribution and one gets not only an 
impression of the mean chronological position of 
each object but also of its positional variability. 
Additionally, we can look for each pair of objects at 
the posterior probability that the first object precedes 
the other. The larger this probability the more 
confident we can be about the relative chronological 
order of the two objects. 

Besides the mode order we can use that estimate for 
the chronological order which is induced by the order 
of the posterior means of the ranks of the objects. 
Alternatively, we can choose the order with minimal 
average distance to all sampled rank vectors, i.e. a 
Bayes estimate minimizing the expected loss. Global 
estimates of the variability can also be obtained, for 
example using the expected distance to the Bayes 
estimate. 

3.3 Classification of traits 

Traits which occur with sufficient frequency within a 
narrow time span provide the archaeologist with the 
ability to separate periods of time and enables him or 
her to develop classification rules for new objects. 
Since the parameters pr,j describe the probability of 
the occurrence of a trait the depiction of their 
posterior means can give an impression of the 
lifespan of the trait and its characteristic period. 
Traits where the posterior mean values for pr,j are 
high for a relatively small range of positions and low 
for the others will be the best candidates for 
identifying an underlying period. Traits where these 
parameters only gradually decrease or have high 
values for a large range of r will provide only weak 
information with respect to separating periods. 

4 Examples 

Example 1: Seriation of Merovingian graves based 
on bead data.  

The data of our first example stem from an 
excavation of Merovingian graves from the burial site 
of Eichstetten, South Germany. Besides other goods, 
beads differing by size, colour, material, production 
technique and shape were found in the graves. We 
perform a seriation of the graves (i.e. objects) using 
as traits different predefined types of beads (Sasse 
and Theune 1996). 
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Figure 1. Incidence matrix of the Eichstetten data 
(columns=traits, rows=graves). The traits are 
numbered according to the original publication 
(Sasse and Theune 1996). The graves are ordered 
according to their mean rank position. The traits 
are ordered with respect to the mean rank of the 
objects associated with the trait. 

The data are shown in Figure 1 where we have 
already used the order according to the mean 
posterior rank in our Bayesian analysis. For these 
data the analysis of multimodality gives no hints for 
several modes: all values of λ ≥ 3.9 define the same 
mode estimate and the Bayes estimate as well as the 
order in Figure 1 differ only slightly from it. All 
estimates are very similar to the solution found by a 
correspondence analysis. The overall variability can 
be described by the expected posterior distance to the 
Bayes estimate which is 4.4. Furthermore, 95% of the 
posterior distribution is within a distance of 6.2 from 
the posterior mode, i.e. all these orders can be 
reached from the mode by moving each object no 
more than 7 positions on average. 

Figure 2. Boxplots of the posterior distribution of 
the rank of each object. The whiskers refer to the 
lower and upper 5% quantile, the '+' sign to the 
posterior mean. 

Figure 3. Posterior probabilities that an object 
shown in the row precedes an object shown in the 
column. 

Figures 2 and 3 depict further aspects of the posterior 
distribution of the object order. Figure 2 summarizes 
the posterior distribution of the position of each 
object in boxplots. In this figure we can detect several 
groups of graves with a very similar posterior 
distribution of their ranks, for example the graves 202 
to 155, 101 to 89 or 159 to 109. Within these groups 
any ordering seems to be more or less equally likely. 
Figure 3 shows for each pair of objects the posterior 
probability to find one object before the other. In this 
graph one can easily detect two groups of objects 
(53,....,89) and (133,....,108) which are well separated 
but show a highly variable internal chronological 



 

107-17 
 

structure. Additionally, within the first group the 
objects (101,....,89) can be nearly definitely placed 
after the first three objects of this group. Also Figure 
2 conveys the impression that we cannot do much 
more but to distinguish early and late graves. Hence 
the proposal of Sasse and Theune (1996) to divide the 
chronological course of the objects in five small 
phases may be regarded as somewhat too optimistic. 

One may argue that the variability of the position of 
an object is merely a function of the number of traits 
of the object and hence the efforts to produce Figures 
2 and 3 would not be not justified. However, this is 
not true. For example the two objects 61 and 123 
have both only two traits, but comparing the boxplots 
of Figure 2 object 123 has a much smaller variability. 
Indeed, object 123 has the two traits 8 and 10 which 
are both only present in the first half of the ordered 
objects and trait 10 is a 'strong' trait occurring at 
nearly all objects in this period. This results in a high 
probability to put this object before object 159 or 
later ones (cf. Figure 3). In contrast, object 61 has the 
two traits 13 and 25, which are both sparse and not 
very typical for a subperiod, such that positioning of 
this object is difficult. 

Looking at the posterior distribution of pr,j in this 
small example is not very informative hence we 
switch now to the larger burial site of Weingarten 
where the same traits has been analysed by Sasse and 
Theune(1996). 

Figure 4. Posterior means of the occurrence 
probabilities pr,j for all traits j of the Weingarten 
data (Sasse and Theune 1996). 

In Figure 4 we show the posterior means of pr,j in a 
grayscale figure. First, about half of the traits seem to 
be not very useful for chronological classification, as 
for none of their chronological positions the posterior 
mean of pr,j is larger than 0.5. Good candidates are the 
traits 16, 18, 23, and 29 allowing a rather sharp 
chronological classification of objects since the high 
values of the posterior means of their occurrence 
probabilities are bounded to a narrow chronological 
interval and outside this interval they decrease 
rapidly. In contrast, traits 6, 11, and 27 are less useful 
although they have a similar range of posterior means 
larger than 0.5, but simultaneously they have non 
negligible probabilities over a large chronological 
span. If we are only interested in a very coarse 
chronological classification traits 5, 10, 31 and 34 
seem to be useful due to their long span with high 
posterior means and their rapid increase and decrease. 

Example 2: An artificial data set carrying a 
chronological and a cluster structure 

The results of a correspondence analysis can be 
erroneous if some of the selected traits do not 
represent the chronological order but other structures, 
e.g. sex groups, social groups or regional differences. 
With an artificial data set we want to demonstrate 
that our approach is also able to detect different 
structures if they are simultaneously present in the 
data. The example consists of 24 graves and 20 traits. 
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Figure 5. Example of an incidence matrix with 
chronological and group specific structure. 

The first 12 traits carry chronological information 
and the last 8 traits group specific characteristics. The 
incidence matrix (see Fig. 5) may be regarded as an 
example for an excavation field with chronologically 
well ordered graves containing also sex specific 
gravegoods. 

 
Figure 6. Results of two analyses of the data 
shown in Figure 5. Columns 1-3: Object orders 
according to the eigenvectors of the first three 
nontrivial eigenvalues of a correspondence 
analysis; Columns 4 and 5: Modes from a 
Bayesian analysis. 

Correspondence analysis is well known to be able to 
detect different structures in a data set by looking not 
only at the first eigenvector (e.g. Zimmermann 1995, 
Baxter 1994). However, for the given example, 
correspondence analysis fails to detect the 
chronological order (see Fig. 6); the first eigenvector 
puts the early male and female graves (m1-m4,f1-f4) 
just beside the late ones (m10-m12,f10-f12), the 
second eigenvector puts a middle group (f5-f7, m5-
m7) at the top and the third eigenvector represents 
only the sex difference. The Bayesian analysis 
reveals two distinct modes; the first represents nearly 
exactly the joint chronological order of male and 
female graves, the second the two sex groups. 

5 Outlook 

We have so far concentrated on exploiting our 
Bayesian approach to describe the variability of a 
seriation of objects and did not use the ability of the 
approach to incorporate substantial prior information 
into the analysis. In the analysis of the artificial 
example 2 we considered both structures, the 
chronological and the sex-specific one, as unknown. 
It is quite conceivable that classification of the graves 
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with respect to sex is possible a priori from the 
group-specific gravegoods. This information can be 
incorporated into our analysis by extending our 
model to P(Yi,j = 1| θ) = gi pRi,j  ki,j where ki,j = 0 if 
trait j is not compatible with the sex of the individual 
of grave i and ki,j = 1 otherwise. With this extension 
of our parameterization only the (chronological) 
order remains as the unknown structure to be 
extracted in the analysis. By more complicated 
extensions we can also handle other factors, for 
example differences in the trait frequencies between 
different spatial regions. 

Another straightforward extension is the use of prior 
knowledge on the order of objects. In many 
archaeological excavations one can often see several 
strata in the earth ground, such that objects found in 
one stratum must be earlier than objects found in a 
stratum above. The implied partial order of the 
objects is known as the 'Harris Matrix' in 
archaeology. To use this prior information we have to 
restrict the set of object orders to those compatible 
with the partial order. Another type of prior 
information exists in analysing graves of larger burial 
sites using the spatial distribution of the graves. Here 
it can be assumed that spatial closeness reflects 
partially a chronological order. Hence we can put 
higher prior probability on orders showing some 
degree of correlation with spatial closeness. 

6 Discussion 

Using an explicit stochastic model and a Bayesian 
analysis we are able to develop a new approach for 
seriation problems in archaeology. The main 
advantage of the approach is the possibility to 
describe the variability of the object order implied by 
the available data. This description may prevent 
overinterpreting of single point estimates and hence 
may lead to a more appropriate interpretation of 
archaeological results. Besides describing the 
variability of the order the Bayesian analysis allows 

also other useful investigations. We have shown the 
additional use in analysing traits with respect to their 
value for chronological classification. Other 
investigations try to detect outliers or to analyse the 
shape of the course in time. In the long run the 
Bayesian analysis will be probably most fruitful in 
incorporating external information either in the 
stochastic model or in the prior information. 

Note that our Bayesian approach is different from the 
one proposed by Buck and Litton (1991) and 
described in Buck, Cavanagh and Litton (1996) and 
Laxton (1997). They do not incorporate the 
unimodality restriction into the prior distribution of 
the parameters but analyse the posterior by retaining 
only samples obeying this restriction. For large data 
sets this method may be computationally not feasible 
since these samples have only small posterior 
probability and hence a large amount of the samples 
must be disregarded. 

Bayesian analysis has also some drawbacks. First, 
choice of the prior distribution is subjective and there 
exists no unique way to represent the state of 'no prior 
knowledge'. A partial solution to this problem are 
sensitivity analyses trying different prior distributions 
and comparing the results. In Halekoh and Vach (in 
prep.) we present a framework for such a sensitivity 
analysis, and in the examples presented in this article 
no great impact of the way of specifying 
uninformative priors was found. Secondly, generation 
of a sequence of samples from the posterior 
distribution by Markov Chain Monte Carlo 
techniques is not a trivial task and requires careful 
programming and diagnostics; a point further 
discussed in Halekoh and Vach (in prep.), too. 
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