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Introduction 

In this research note, a brief account is given of some recent 
work, investigating sample size requirements for some 
specific archaeometric problems. 

The original motivation for this work arose in the context of 
an investigation into the normality, or otherwise, of lead 
isotope ratio fields (Baxter, 1998). A specimen from an ore- 
body can be characterised by measurements of three lead 
isotope ratios, and n such specimens can be used, to estimate 
the lead isotope field for the ore-body. This is a three- 
dimensional construct, h using the data on such fields, in 
provenancing studies for example, it is sometimes assumed 
that fields have a trivariate, normal distribution (Sayre, et al., 
1992). 

The analyses in Baxter (1998), suggested that normality was 
the exception rather than the rule. This may not previously 
have been recognised, because the sample sizes typically 
available, in conjunction with the methods of statistical 
analysis used, were too small to detect departures from 
normality. It is thus of interest, to ask how large sample sizes 
need to be to detect non-normahty. This is particularly so, 
since there seems to be widespread acceptance, that a well 
selected sample of size 20, from an ore-body, is an 
'agreeable minimum' (Pollard and Heron, 1996). We shall 
argue that this is only so, if the lead isotope field is normally 
distributed; if it is not, somewhat larger samples are needed 
to detect the non-normality. 

The issue of sample size is of concern in a more general 
setting. In practice, sample sizes are often determined by 
practical considerations, such as cost of analysis or 
availability of specimens. This is so, in the study of artefact 
compositional data where, for example, the reported use of 
samples greater than 100 is uncommon. Often, data are 
analysed using muhivariate statistical methods such as 
cluster or principal component analysis (PCA), that result in 
graphical output, designed to show structure (e.g. groups) in 
the data, or its absence. Where structure is very obvious, it is 
likely that relatively small samples will be successful in 
displaying this (and also the case, that multivariate 
methodology may be unnecessary). With less obvious 
structure, larger samples may be needed, and the question, 
'how large?', is then of interest. 

In a sense this is an impossible question to answer, since the 
answer depends on the precise, but unknown, form of the 
structure, that the data are designed to investigate. 
Nevertheless, it may be possible to suggest guidelines, and in 
the remainder of this paper, we outline some possible 
approaches, that we have explored. 

Sample sizes for lead isotope data 

The statistical tests used in Baxter (1998), for several of the 
larger data sets, published by Stos-Gale et al. (1996), 
suggested that the data were non-normal. Given that this is 
established, kernel density estimates (KDEs) provide a useful 
tool for displaying the form of non-normality. KDEs can be 
thought of, as smoothed histograms and are discussed, in an 
archaeological context, in Baxter, et al. (1997). In Figure 1, a 
KDE is shovra for one of the univariate ratios for the Lavrion 
field, based on 59 observations; more generally, such a KDE 
might be based on a linear combination of the ratios. The 
KDE looks non-normal and is bi-modal. 

In asking what sample sizes are needed to detect structure in 
multivariate data sets, the term 'structure' needs to be 
defined. One model, for lack of structure, is that the data 
have a (multivariate) normal distribution. Here, we shall 
define structure to be a departure from normality, that 
manifests itself as multi-modality. This is possibly 
restrictive, but many published analyses of compositional 
data are primarily interested in this kind of structure (as 
shown in PCA or discriminant analysis plots, for example). 

The problem then is, given a sample from a population with a 
multi-modal distribution, what sample size is needed to 
detect the multi-modality? The answer clearly depends on the 
form of the multi-modality, and we have approached this in 
two ways. 

(a) Non-normal, multi-modal distributions have been 
simulated, using mixtures of normal distributions. The 
'populations' generated in the simulation are repeatedly sub- 
sampled, for some fixed sample size, and the number of 
occasions, on which multi-modality is detected, is 
determined. This exercise is repeated for different sample 
sizes, to find at what point the detection of non-normality 
becomes reasonably certain. 
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(b) Real data sets, in which multi-modality is evident, are 
sub-sampled in a similar way, to determine at which sample 
size there is a failure to detect multi-modality. 

It is necessary to establish a methodology, for determining 
whether or not a specific sample exhibits multi-modality, and 
two approaches have been used. In the first approach, tests of 
normality have been used, and the power - the proportion of 
times that the test correctly rejects the null hypothesis of 
normality - for different sample sizes, and kinds of multi- 
modality investigated. A test of normality based on a KDE 
estimate, developed by Bowman (1992), for the univariate 
case, and extended to the multivariate case, by Bowman and 
Foster (1994), has been used. In the second approach, a KDE 
of a sample is obtained and the number of modes counted. 
This latter approach has presented a number of difficulties, 
that are discussed in section 3. 

Repeatedly, taking sub-samples, of size 20 from data on the 
univariate ratio shown in Figure 1, suggested that the power 
of the test of normality was about 20%. To achieve a power 
of 70%, a sample size of around 45 was needed. This result is 
consistent with those, arising Irom the experiments 
conducted on simulated mixtures, where a sample size of 20 
was inadequate for detecting non-normality, in the presence 
of significant overlap between the components of a mixture. 

Gale et al. (1997), published data from the Lamaca axis in 
Cyprus, for 73 specimens, and discussed this in Stos-Gale, et 
al. (1997). The specimens came from nine different deposits, 
and bivariate plots of the ratios showed a clearly non-normal, 
multi-modal structure, associated with the different deposits. 
Conducting a similar exercise, to that described in the 
previous paragraph, shows that for 70% power, a sample size 
of over 30 is needed. 

The importance of these results, is that they suggest that 
sample sizes recommended in the literature, may be too 
small. If the data for a field are normal, then a sample size of 
20 may be adequate, to delineate the field, but if data are 
non-normal, then much larger samples may be needed, to 
detect and display this. 

Mode counting 

In the analyses just discussed, the sampled populations were 
multi-modal, and tests for normahty were used to detect this. 
It is possible that samples from the population will be 
detected as non-normal, but will not necessarily exhibit the 
multi-modality of the population. In practice, an assessment 
of structure would often be made more directly, on the basis 
of visual inspection of the data, in the form of a histogram, 
KDE or bivariate plot. In other words, after the creation of 
some visual display, modes are counted. It is of some interest 
to ask if this approach, as opposed to formally testing 
normality, gives rise to similar conclusions. 

In principle, it should be possible to repeatedly sub-sample 
data, from a population known to be multi-modal, count the 
number of modes in a sample, and, estimate the sample size 
needed to 'capture' the true modality, some fixed proportion 
of the time. Putting this idea into practice is a non-trivial 
problem. To begin with, there is no uniquely 'correct' way of 
determining the number of modes in a sample. Our approach 

has been to fit an adaptive kernel density estimate 
(Silverman, 1986), using a pilot smoothing parameter, 
determined by a method described in Wand and Jones (1995, 
74). 

For a single sample, visual inspection is usually sufficient to 
establish the number of modes, though there are sometimes 
borderline cases, where the decision is not straightforward. 
For the kinds of structure we are interested in, small modes at 
the periphery of a plot, corresponding to a small group of 
outliers for example, would be discounted in assessing the 
main structure in a data set. Devising methods of 
automatically counting modes - given a KDE estimate - is 
not straighforward, because of the difficulty of establishing 
rules, mimicking human decision making in a consistent 
way. Some automatic procedure is necessary, if thousands of 
simulated data sets are to be inspected. 

We have experimented with a number of methods, including 
the use of neural networks, and this work is still at an early 
stage. First impressions are that mode counting gives similar, 
or possibly better, results, compared with testing for 
normality, in the sense that similar or smaller samples may 
suffice to detect structure. This may, however, be a 
consequence of the particular test of normality used, and 
further investigation is needed. 

Multivariate problems 

Section 2, and other work not described here, has 
concentrated on the univariate case. The real challenge is to 
extend the ideas developed there to the multivariate case, and 
in this section, some possible approaches are outlined. 

The problem is that, of determining what sample sizes are 
needed to detect multimodality in p-dimensional data sets, 
where p may be large (> 20 is increasingly common). A 
direct attack on this problem is unlikely to succeed, because 
of the 'curse of dimensionality', so that some form of initial 
data reduction is ahnost certainly essential. The main 
approach investigated, so far, has been to perform a PCA, 
and then to extend the methods used, for the univariate case, 
to the bivariate PCA plot. 

Figure 2 shows a plot of the first two components, in a PCA 
analysis of about 230 specimens of archaeological glass, 
using 11 elements. Heyworth (1991) classified the glasses by 
colour. There are two main concentrations of points on the 
plot; the dense central concentration consists mainly of light- 
blue glass, while the less dense cloud, to the left, consists 
mainly of light-green glass. 

The data set, used here, is much larger than many used in 
practice. For example, of five multivariate analyses reported 
in four papers in Archaeometry 38 (I), four use a sample size 
of less than 40, three of which are less than 20. Repeatedly, 
sub-sampling from the component scores, shown in Figure 2, 
and testing for bivariate normality using the statistic 
developed by Bowman and Foster (1994), suggests that a 
sample of size 25, gives a power of about 60%, whereas a 
sample of size 50, gives a power close to 100%. These 
sample sizes were used, because Bowman and Foster (1994) 
provide critical values for them; their results  are being 
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extended, so that intermediate sample sizes can be 
investigated. 

Investigations of simulated data, where the possibilities are 
much richer, than in the univariate case, and mode counting, 
have still to be undertaken, as have studies, based on other 
real and structured data sets. 

An alternative to the use of PCA, that is also under 
investigation, is the use of projection pursuit (PP) 
methodology, of which PCA is a special case. PP methods 
have been around for some time (Jones and Sibson, 1987) 
but, with the exception noted below, do not seem to have 
been applied to archaeometric problems. The basic idea is 
simple. Whereas in PCA, linear combinations of the data are 
chosen to maximise variance, in PP methods they are chosen 
to optimise some index of 'interestingness'. As Simonoff 
(1996, 117) notes, normality may be regarded as 
uninteresting, so any statistic suitable for testing for 
normality might be used as an index. The idea is illustrated in 
Baxter (1998), albeit without using the term 'projection 
pursuit'. The univariate, Shapiro-Wilk statistic is widely 
regarded as one of the best omnibus tests of normality. The 
multivariate extension of Malkovich and Afifi (1973) seeks 
the linear combination of p variables, that minimises the 
univariate statistic. Baxter (1998) uses the statistic, along 
with others, to test for trivariate normality, in three- 
dimensional data sets. The minimising combination identifies 
a particular view of the data, that can be displayed using a 
univariate KDE, to visuaUse the form of non-normaUty. 

In the context of sample size problems, PP potentially 
provides a 'sharper' view of the data than PCA. If, 
empirically, this can be shown to be the case, it suggests that 
smaller sample sizes may be needed, to identify structure, 
than if PCA is the chosen method of analysis. 

Summary 

In this paper, we have reported on work - still very much in 
progress - that is attempting to grapple with the problem of 
sample size requirements in archaeometric study. Our 
approach has been based on a mixture of simulation and case 
studies of real data, and has mainly looked at univariate 
problems, so far. Results suggest that in one specific area of 
application - lead isotope ratio analysis - sample size 
recommendations, commonly given in the literature, may be 
much too small. The controversy surrounding the 
interpretation of Cypriot lead isotope data (e.g. Stos-Gale et 
al., 1997), is at least partially attributable to the inadequacy 
of the sample size, 43, on which (until recently) 
interpretations were based. That 43 was inadequate, given the 
true complexity of the Cypriot field(s), has only become 
readily apparent with much more data collection. 
The work described here is being extended to the more 
difficult multivariate case, and a number of possible avenues 
of enquiry have been identified in the paper. 
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List of Figures in CD-ROM. 

Figure   1.  An  adaptive  kernel density estimate of the 

disfribution of the Pb/ Pb lead isotope ratio for the 
Lavrion field. (Data source: Stos-Gale et al., 1996) 

Figure 2. Principal component, of standardized data, based 
on the chemical composition of 227 specimens of glass from 
Saxon Southampton. Plotting symbols distinguish between 
light-blue and light green glass. (Data source: Heyworth, 
1991) 
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