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Abstract. The paper presents a regional scale archaeological predictive model for the state of Brandenburg in North-Eastern
Germany. The model incorporates more than 8,500 archaeological sites dating from the Mesolithic to the Slavic Middle Ages
(ca. 8000 BC to 1250 AD) and a variety of environmental parameters. For the first time in the region, settlement patterns can
be analysed and interpreted on a landscape scale. Developments in settlement structures and ecological dependencies can be
tracked over almost 10.000 years. This knowledge is used to build a probability-driven predictive model using the Dempster-
Shafer Theory of Uncertainty.
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1. Introduction

This paper describes the design, implementation and
application of a predictive modelling tool for regional scale
planning and analysis in the state of Brandenburg, North-
Eastern Germany. Heritage management has been researching
archaeological predictive models in the region for some years
now, but so far only sample areas of very limited spatial
extend have been modelled (see Münch 2003 for a detailed
project description). The research presented in this paper was
conducted to find out whether the available information can
support analysis and prediction of archaeological sites for the
area of the entire state (ca. 30,000 km2). The basic ideas and
troubles of archaeological predictive modelling itself will not
be discussed in this paper. Please refer to van Leusen et al.
(2004) for a summary or browse CAA proceedings for recent
developments.

Epoch S G
Mesolithic 8000–5500 BC 152 0
Neolithic 5500–2200 BC 421 90
Bronze Age 2200–800 BC 1513 1986
Iron Age 800–50 BC 924 597
Germanic Age 50 BC–375 AD 763 219
Age of Migrations 375 AD–750 AD 38 7
Slavic Middle Ages 750 AD–1250 AD 1617 113

Table 1. Number of prehistoric settlements (S) and graves (G) in

Brandenburg.

There is no comprehensive assessment of the state’s current
archaeological record, which consists of ca. 27,000 sites. Not
all of them have revealed enough clues to determine their age
and function. About 8,500 sites can be attributed to prehistoric
settlements or graves and have thus been included in this
study. All of Brandenburg’s main archaeological epochs are
represented with more or less sufficient site numbers. Due to
the glacial history of the landscape, human remains and
artefacts dating before the last Ice Age are virtually absent and
thus the record starts with the Mesolithic (Tab. 1).

Knowledge about Brandenburg’s prehistoric settlement
structures is generally fragmentary and limited to local ob -
servations. It is hoped, therefore, that this study may provide
some fundamental information and research per spectives
needed to establish a landscape and environmental archae -
ology in Brandenburg.

2. Predictive Model Design

2.1 Fundamental Issues

According to current design practice, a predictive model
calculates a value of “archaeological importance” for each cell
of a regular raster overlaid on the landscape. The calculation is
based on correlations between known archaeological site
locations and variables that can be used to describe them, most
commonly topographical, hydrological and geological data.
Before the model could be set up, several fundamental design
issues had to be considered, one of them being the question
what mathematical framework to use. A quick review of the
current state of the art (e.g. van Leusen et al. 2004) shows that
statistical methods, especially statistical regression models,
are still the most widely used tools in archaeological
predictive modelling. It was found, however, that a
generalised probability model would offer the best
combination of generality, robustness and flexibility (see next
section for details). Another concern was the fact that some
digital geodata layers were only available with low resolution
but nevertheless had to support a target cell width (ground
resolution) of 50 m in order for the model to be of any use in
detailed heritage management planning. In the end it turned
out, however, that all data was of sufficient detail and quality.
Deciding what information to include depends on what
information is available, expected to be relevant and of good
enough quality to support the needed precision. From the
digital map material available for the state of Brandenburg, a
soil type map, a digital elevation model and a map of buffered
stream networks were chosen. From these, the following



information layers could be retrieved: height, slope, aspect,
basic morphology (plain, ridge, pit etc.), terrain curvature,
buffered distance from rivers of 1st to 7th degree, buffered
distance from large, medium and small lakes and buffered
distance from known sites.
Terrain parameters such as height, slope and aspect
undoubtedly have relevance for site location, as does the basic
type of morphology. All of them can be derived from a high-
quality digital elevation model with standard GIS tools.
Terrain curvature, although important for estimating effects of
erosion on site preservation (Ducke 2004) was found not to be
relevant and excluded from the analysis. Aspect, i.e. the
direction of the slopes on which the sites lie, showed barely
enough relevance to be included in the study (sites seem to
have a little preference for slopes facing east and south-east).
Differentiation of water distances according to the type of
stream improves model quality, although experiments have
shown that the same buffer size (500 m) can be applied to any
type of water body.
In accordance with Waldo Tobler’s first law of Geography,
which states that “all things are related, but nearby things are
more related than distant things” (Tobler 1970), it has been
observed that the neighbourhoods of known sites are
especially likely to produce more sites. To compensate for this
spatial autocorrelation, a layer with a buffer of 500 m around
a randomised sample of the known sites could be included as
additional evidence for site presence.
For obvious reasons, the validity which can be achieved by
such a model also depends on the quality of the archaeological
data itself. Unfortunately, the latter is often very limited. In
order to avoid extremely high variation and over-
generalisation of archaeological data, the study area was split
up into 13 regions as defined by their distinctive historical
geography (Fig. 1), each of them with characteristic
archaeological and topographical properties. The predictive

model was then run for each region separately and the results
patched together.

2.2 Mathematical Framework

For the mathematical framework, the Dempster-Shafer
Theory of Evidence (DST) was chosen. DST, as defined by
Dempster (1967) and Shafer (1976), is built around the central
concept of belief, which is a somewhat more relaxed,
generalised version of mathematical probability. In fact, DST
itself is a generalised probability theory that has a lot in
common with Bayesian Probability Theory but is less strict
and more simple to use. In analogy to probabilities in a
Bayesian analysis, DST assigns a strength of belief to
hypotheses within a frame of discernment (FOD). The FOD
for a simple archaeological predictive model consists of two
mutually exclusive hypotheses which cover all possibilities:

h1 = “site” and h2 = “no site”.

In a Bayesian analysis, there is a fundamental summation
property p(h1)+ p(h2) = 1. Hypotheses are thus “linked” to
each other: every observation which supports “site” refutes
“no site”: p(h2)= 1  – p(h1) and vice versa. This contradicts real
life experience. Clearly, the reasons that made prehistoric
settlers choose a site location might have been completely
different from those that caused them to avoid certain spots.
DST caters for this by automatically creating a third, implicit
hypothesis h1,2 which contains uncertainty, i.e. all evidence
that might support h1 and h2 equally well (note h1 and h2
cannot both be refuted because of the requirement that they
must cover all possibilities).
In addition, there is a number of evidences that might support
or refute each hypothesis: soil type, topography, distance from
water etc. Evidences are encoded as classified GIS raster
maps with value range [1...n] and n being the highest class
number. An evidence is quantified by a basic probability
assignment (BPA), which assigns a probability value m to
each hypothesis, such that: 

m(h1) + m(h2) + m(h1,2) = 1.

Calculation of BPAs for a given evidence map could be done
in a number of ways. The solution adopted in this study is to
simply compare the overall frequency of a given class F1 (e.g.
“soil type A” or “height 1 to 10 m”) in an evidence raster map
to the frequency with which this class occurs in cells that also
contain known archaeological sites (F2). If F2 > F1 then the
evidence supports the “site” hypothesis and vice versa. To
compensate for hidden variables and insufficient data quality,
a user-specified percentage of the BPA mass may also be
shifted to the “uncertainty” hypothesis. Every raster map that
is to be included as evidence in the DST analysis must thus be
turned into three separate maps, quantifying m(h1), m(h2) and
m(h1,2) respectively, with each cell summing to 1 if they are
overlaid. 
Once all evidences have been cast into this form, they can be
combined using Dempster’s Rule of Combination (see Smets
1994 for mathematics, Ejstrud 2004 for an application in
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Fig. 1. The study area of Brandenburg (North-Eastern Germany). 13
subdivisions are shown in different colours.



archaeology). This results in a number of interesting metrics,
the most important one of them being “belief”. Their
usefulness will be discussed in the next section.
In Summary, the following properties make DST a very useful
tool for building predictive models:
● Simple, “natural” terminology, concepts and usage.
● Handling of uncertainty.
● Few mathematical constraints.
● Provides very useful metrics for the output maps.

Naturally, there are also some drawbacks:
● The variety of output metrics can make it hard to find the

most useful map.
● Mathematical properties not as well explored as classical

probability theory.
● DST is not very well documented.
● Few software implementations exist (but see below).

2.3 Software Implementation

Although there are few software packages available which
provide DST functionality in a GIS environment, this is not
the first time it has been used in predictive modelling.
A solution using ArcGIS was published a while ago (Lorup
1999) and the Idrisi GIS system has a (somewhat limited)
DST module which even features archaeological examples in
its documentation (Eastman 1997). The latter software has
been used with success by Ejstrud (2004) in his studies on
archaeological predictive modelling in Denmark. Ejstrud
could demonstrate the superiority of a belief-based predictive
model in comparison with a statistical regression model.
Nevertheless, it was found that existing software did not
harness the full power of DST and was only available in
closed source, commercial GIS packages. Thus, a custom set
of modules was created for the open source GRASS 5 GIS
platform and will hopefully be available soon as part of the
GRASS 5.3 and 5.7 source code distributions (see GRASS
GIS). The modules include programs for randomised
sampling, site distribution analysis, raster map classification,
automated BPA quantification and the core DST combination
modules. With their help, any sort of evidence encoded in
raster GIS layers can be included in the DST analysis. All of
the work presented in this paper was carried out using this
open source software.

3. Running the Predictive Model

A possible workflow of a DST predictive modelling analysis
within a GIS is:
● Take a randomised site sample.
● Produce evidence maps (BPAs) from sample site locations

and raster coverage maps (soil, topography etc.).
● Combine evidence maps using Dempster’s Rule of

Combination.
● Compare result maps with full set of samples:

a. If too many sites fall in ‘no site’ areas: repeat from step
2 but transfer more BPA mass from the ‘site’ to the ‘un -
certainty’ hypothesis and/or include further evidence.

b. If the ‘site’ areas seem to be too large: repeat from step
2 but transfer more BPA mass from the ‘no site’ to the
‘uncertainty’ hypothesis and/or include further
evidence.

This process yields several output maps with values in the
range [0;1] that can be used for decision support and
interpretation. The most basic one is the belief map which is
akin to probability and represents the strength of belief in a
hypothesis (“site” or “no site”) being true. Another useful
metric is plausibility which represents the highest possible
belief assuming that there was no uncertainty. The belief
interval map shows the differences between plausibility and
belief and can be used to identify “hot spots” of uncertainty
and areas where more research could improve the situation.
Finally, the weight of conflict can identify places in which
evidences contradict each other and guide a researcher in
deciding which variables to include in the analysis.

3.1 Predictive Models as Exploratory Tools

As has been mentioned before, this predictive model was the
first research effort ever to include all of the state’s
archaeological record and study the patterns of site
distribution through time. In the course of this, it became clear
that predictive models can also act as very powerful
exploratory tools. They enable researchers to study
interactions between site locations and landscape variables of
any type on any scale and facilitate insight into complex
relationships.
This process starts at the very first stage of building the
model, as a thorough exploratory data analysis is required to
create meaningful evidence maps. As an example, consider
the phenomenon of site autocorrelation mentioned in section
2.1. To turn this information into an evidence raster map,
several questions have to be answered:
● What sites correlate with each other?
● What is the extent of the spatial correlation?
● In how far is there a difference between archaeological

epochs?
A statistical analysis using random samples of 10, 25 and 50%
of the known sites revealed a lot of interesting relationships.
For example, it can be demonstrated that a random sample of
about 600 settlement sites is good enough to estimate the
positions of almost half the known sites for Brandenburg’s
entire 30.000 km2 if we add a buffer zone of 2 km radius
around the sample sites. Even though the buffer zones account
for less than 10% of the territory! This shows that there is
strong spatial correlation in the settlement site locations.
Settlers obviously did not like to relocate far from well-known
and established nuclei.
Grave distribution seems to follow different trends depending
on the archaeological epoch. Bronze Age graves show the
same spatial correlation properties as settlements in general,
Iron Age graves do not.
All of these facts have to be considered when creating a buffer
zone map for use as autocorrelation evidence.
The situation is not less complex for any of the other
evidences listed in section 2.1. A solid predictive model is
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thus far from being an automatic, purely data-driven tool. On
the contrary, it represents deep and – at least in the case of
Brandenburg – pioneering understanding of settlement
patterns, human and environmental processes.

3.2 Brandenburg Through the Ages

An obvious means of gaining insight into prehistoric
settlement processes is to compare predictive maps of
different archaeological epochs. Provided that the
archaeological data is of sufficient quality, it should be
possible to find plausible explanations for observed changes
in site patterns over time. With the limitation of course, that
all interpretations will only be partially true, as a predictive
model at this scale can never include all relevant variables and
there will always be uncertainty involved. However, even
though not all site locations can be explained with the
relatively crude environmental variables included in this
model, it is still possible to account for a large portion of them
and to identify general trends in the diachronic comparison.
To demonstrate the potential, we will take a brief look at the
settlement site patterns.
The map for the Mesolithic (Fig. 2) shows a pattern of sites
which follow the courses of the main navigable rivers.
Apparently, mesolithic settlers did not dwell in the “chaotic”,
densely forested interior. It should be noted however, that the
number of known mesolithic sites is too small in almost all parts
of the study area for reliable statistics. Only in the central-
western part of Brandenburg can this model be backed by
sufficient data. 
The pattern of Neolithic settlement sites (Fig. 3) shows a
spread of activities from the main Elbe and Oder rivers (the
two major sources of neolithic influx into Brandenburg) into
the country’s interior. Settlement sites can be found with equal

frequency along the banks and shores of larger and smaller
streams and lakes. A much more significant indicator – owing
to the neolithic economy – is soil quality. Most sites lie on
fertile clay and peaty soils.
This parameter is still important, but a little less dominant in
the Bronze Age (Fig. 4) which sees technological changes and
advances that lead to a foundation of settlements in formerly
less attractive areas. In fact, it is only in the Middle Ages that
Brandenburg develops another system of settlements as dense
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Fig. 3. Belief values for hypothesis “site” in the Neolithic
(settlements). Red = high belief; green = medium belief, yellow =
low belief.

Fig. 4. Belief values for hypothesis “site” in the Bronze Age
(settlements). Red = high belief; green = medium belief, yellow =
low belief (here shown with different grey levels).

Fig. 2. Belief values for hypothesis “site” in the Mesolithic
(settlements). Red = high belief; green = medium belief, yellow =
low belief (here shown with different grey levels).



as that of the Bronze Age. Predicting site locations is
accordingly difficult, as there is no single environmental
variable which they submit to. This situation is reflected in the
absence of large, coherent patches of “high belief” values for
the “site” hypothesis.
Other variables that quantify social, political etc. processes
would be needed but are not currently available. The situation
does not change much in the Iron Age and Germanic Age. The
Age of Migrations is a period of settlement caesura that hasn’t
so far revealed enough sites to justify a quantitative analysis.
The Slavic Middle Ages, interestingly enough, exhibit a site
pattern and predictive model structure that seems to resemble
the Mesolithic at first glance (Fig. 5). This is caused by the
fact that the main navigable rivers are again becoming a major
factor – this time as links in a medieval trade network that
spans all of Europe.
Much more remains to be said, e.g. about grave locations and
the topographical relationships they adhere to, but owing to
the limited space, these examples must suffice to show the
potentials of the model.

3.3 Methodological Limitations

As has been mentioned before, interpretations of the model
output always depend on the quality and detail of the
archaeological data. In this case, the most severe limiting
factor is the lack of temporal resolution. This is obvious e.g.
for the “Neolithic”, which includes several “cultures” with
diverse settlement patterns and environmental conditions,
from the first neolithic settlers to the dawn of the Bronze Age.
As concerns the latter, a good indication of the possible
confusions caused by low temporal resolution can be found in
the grave locations belief map (Fig. 6). Looking at it, it
becomes immediately apparent that the Northern rim of the

study region shows coherent patches of deep red. This
indicates that a portion of the Bronze Age graves were erected
in locations which can be clearly identified by significant
variables, in this case a topographical position that favors high
altitude and visibility. Further south, the picture gets more
fragmented and most of the graves are in fact located in the
yellow area of medium strength belief. There seems to be no
variable in the model which could reliably explain this
“chaotic” pattern. This remarkable division did, however,
never exist at one time in actual history. The picture can only
be explained if one takes into account that it represents the
intermingling of grave sites from two different epochs within
the Bronze Age. The northern-most part of Brandenburg is
dominated by burial mounds of the 16th to 14th centuries BC
which were erected in imposing topographical locations.
Further south, the majority of the record is made up of literally
thousands of urnfield culture (ca. 12th to 8th century BC) pit
graves that often agglomerate in large burial grounds.
Apart from archaeological data quality, the most regrettable
lack of information in the current model concerns modern
land use and impact assessment. Some studies have been
conducted in the past (see Ducke 2004) but only for a small
sample area. There is currently no sufficient digital data to
support erosion assessment and site impact management for
the entire state.

4. Results

Examination of data from more than 8500 sites has, for the
first time in the region, revealed large-scale patterns of change
and consistency in the region’s prehistoric settlement
structures. We are now able to compare settlement patterns
and create models to explain them. Archaeological heritage
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Fig. 5. Belief values for hypothesis “site” in the Slavic Middle Ages
(settlements). Red = high belief; green = medium belief, yellow =
low belief (here shown with different grey levels).

Fig. 6. Belief values for hypothesis “site” in the Bronze Age
(graves). Red = high belief; green = medium belief, yellow = low
belief (here shown with different grey levels).



management now has a tool to use in large-scale planning
processes. The output maps can be presented to developers
and used in negotiations and resource allocation.
The project has shown that it is possible to get significant
information about site distributions on a landscape scale and
use them in a predictive model. In the future, improved
archaeological data will allow for finer grained spatial and
temporal resolution. This will allow more significant
observations to be made from the site samples. It is also hoped
that better archaeological data will improve the certainty with
which the model classifies unknown locations. Also,
processes affecting site preservation will have to be taken into
account.
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